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Collision and “orogenic collapse”

“Flat slab” models
models




Sierra Pampeanas as an analog
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So what of this analog? Style of deformation is similar, but is that reflective of driving force or simply the way that kind of crust shortens?



Moden South America

Early Eocene, Western North America

Sierra Pampeanas as an analog

Similar structural style
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Sierra Pampeanas differences
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What of pre-shortening sedimentation? In Pampeanas, most sections only a few 10s of meters; up to maybe 300m in some wells. There is a ~10km deep
foredeep to the west...



Rockies has kilometers of section. Also has undeformed Colorado Plateau between foreland and thin-skinned deformation--larger than entire Pampean
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Tien Shan as analog

isopachs (km)
Cross, 1986




Tien Shan differences
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Is there an “India™?

Active shortening between collider and
foreland mountains?

Colorado Plateau as rigid as Tarim Basin?
Subsidence pre-shortening?
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. Narrow flat slab

A. Broad flat slab B
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Flat slab predictions

|) Removal of lithosphere
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Fig. 3. (A) Final (middle Oligocenc) displacement and thickness of the mantle
layer of North America lithosphere. Thickness is contoured in 20-km intervals.

Bird, Science, 1988
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Livaccari

Eastward limit of
significant lithospheric
thinning and crustal

refrigeration during
evier-Laramide orogeny
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Region of mafic volcanic fields
(<5 Ma) with asthenospheric

Rand-Pelona-Orocopia schist

- Upper Cenozoic basalts (<5 Ma)

mantle source (e units)

C—Cima (+8) MT—Mt. Taylor (+5)
CS—Coso (+5) P—Potrillo {+7)
G—Geronimo (+8) SC—San Carlog {+8)
GC—Grand Canyon (+6) SG—St. George (+8)
GW—Grand Wash (+6)  SP—Springerville (+6)
MD—Mojave Desert (+7) ZB—Zuni

Region of mafic volcanic fields (<5 Ma) with
lithospheric mantle source (€ units)
BP—Big Pine (-4) LH—Leucite Hills {-10)
CF—Crater Flats (-8) MC—McCoy (-5)
CR—Carrizozo (0) ND—Navajo diatremes (+2)
D—Dotsero (-4} O--Ocate (+1
DV—Death Vailey (-8) RC-—Raton-Clayton (+1}
HB—Hopi Buttes (+3)

T—Taos
Plateau
©

SF—San Francisco (+2)
(+6)] JZ—Jemez Mtns (+2) SR-—Snake River {-3)
L where from pl to asth h
CH—Casteneda Hills, 11 - 7.5 Ma

GB~-20 10 15 Ma basalts NW of Glla Bend

compared to <5 Ma basalts of G, SC, & SP,
15 - 5 Ma (-4 at >15 Ma and +6 to +8 at <5 Ma)

hi ic mantle
source Is [dentified and time af transitlon (g4 units and age of volcanics)
(-6 at 11 Ma and +6 at 7.5 Ma)

L—Lucero Mins., 8 - 4 Ma (+3 at 8 Ma and +7 at 4 Ma)
LC—Lunar Crater, 9 - 4 Ma (-4 at 9 Ma and +6 at 4 Ma)
LM—Lake Mead area, 12 - 5 Ma (-6 at 12 Ma and +6 at § Ma)
S—Soccoro area, <8 Ma (-2 at >9 Ma and +5 at <9 Ma)
U—Uvas Basalt, 27 - 10 Ma (0 at 227 Ma and +5 at <10 Ma)

and Perry, Geology, 1993




Flat slab predictions

If buoyant plateau, effects should propagate
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What do flat slabs do?
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Make things go up!?
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As an aside, the Skinner et al. 2013 paper argues that due to asymmetry in spreading in Pacific, Inca Plateau is 600 km farther east than shown here



Oceanic plateau under some

(Models with plateau solid lines, without dashed)
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Some other effects that can shallow subduction
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Observed effect of subducting a plateau?
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Observed effect of subducting a plateau?
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Fig. 3. Location of Pacific—Farallon/Nazca conjugate features relative to a given flat slab. We have placed points along Pacific plate bathymetric highs, and created conjugate features using standard plate reconstruction techniques and the rotation model of Miiller et al. (2008). A plot for each flat slab shows the proximity of a
reconstructed point on the bathymetric anomaly to that flat slab, plotted as a function of time. The thickness of the line scales with the crustal volume in a 100 km 200 km box around the Pacific plate conjugate point. The grey box represents the spatial and temporal extent of the flat slab from Ramos and Folguera (2009).

We expect impactors to pass through this target zone if the buoyancy hypothesis is the cause of the flat slab. The map shows the location of the flat slabs along the South American margin (Ramos and Folguera, 2009). The black triangles are the point from which our distances are calculated. See Supplementary Table 3 for
information about the conjugate points.



Where is flat slab today?

600 — — — — ]

Liu et al., Nat. Geosc.,2010

Sigloch, G73,201 |

210 220 230 240 250 260 270 280 290 300




...or is it even Farallon?
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Collision predictions

South-to-north movement of igneous gap
(and emplacement of schists)

Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related Farallon A34-320.
arc magmatism on adjacent North America (84-73 Ma)
during its northward movement.
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Collis

Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.
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Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.
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Collision and collapse difficulties

Where is collisional deformation near

margin?

Why would Sevier belt shutdown?

Why was igneous activity temporally tied
to Laramide!?




Latest K subsidence

COMB orientation
and timing

Duration

So we have some contradictions. Also note Colorado Plateau, extent of arc shutdown. UNclear if schists record true flat slab
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Shallowing subduction as North America moves westward
D. Suction on lithosphere drives subsidence, stresses
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B. Shallowing slab locally interacts with thick lithos
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E. Secondary convection in asthenosphere
localizes Colorado Mineral Belt
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