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FIG. 7 Stratigraphic cross-section of Cretaceous rocks from central Utah to northeastern Colorado. Thicknesses are based on well and outcrop control. Vertical exaggeration approximately x151. The
Castlegate Sandstone has been interpreted as a product of “antitectonic” sedimentation (Yoshida et al., 1996). Colors were utilized in the paleogeographic maps. Abbreviations: Ksx, Sixmile Canyon
Formation; Kfv, Funk Valley Formation; Kav, Allen Valley Formation; Ksp, Sanpete Formation; Kr, Rollins Sandstone Member; Kcz, Cozzette Sandstone Member; Kco, Corcoran Sandstone Member. (From
Molenaar and Rice (1988).)



Turonian -91 Ma

Explain what the colors are (greens are areas accumulating coals, bricks are carbonates). One initial question is, why a seaway? Classically, this was thought to largely be high stand of ocean



Campanian

~75 Ma




Maastrictian
~-68 Ma

Seems like an orderly progradation of terrestrial facies out into the seaway...but look at sediment accumulation...
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Fig. 1. Restored Upper Cretaceous isopach map for
western North America. Data for the United States are
from Cross and Pilger [1978b]. Data for Canada are from
McCrossan and Glaister [1966]. Contours are given in feet
because the original data are presented in this manner.
The irregular pattern in Wyoming and Colorado is due to
Laramide tilted block movements in the foreland. It is the
general pattern and great width of the sedimentation that
requires explanation.

f Mitrovica et al., Tectonics, 1989
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Fig. 1. Restored Upper Cretaceous isopach map for
western North America. Data for the United States are

from Cross and Pilger [1978b]. Data for Canada are from w
McCrossan and Glaister [1966]. Contours are given in feet

because the original data are presented in this manner.

The irregular pattern in Wyoming and Colorado is due to

Laramide tilted block movements in the foreland. It is the

general pattern and great width of the sedimentation that

requires explanation.

Mitrovica et al., Tectonics, 1989

We need something to pull crust down at least in some areas. What exactly can do this-what is “dynamic subsidence”



Viscous fluids
In a Newtonian fluid, if horizontal velocity is u and vertical is v, then
the shear stress in the fluid is related to the gradient in velocity:
r =7 du
Applying continuity (conservation of fluid) and assuming equilibrium,

can be shown that the dynamic pressure P is related to variations in
fluid velocity u and v (horizontal and vertical):

8_P_ 82u+é’2u
8x_n ox* 97°
JP ’v  J°v
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Fig. 2. Streamlines, 1sobars, and contours of constant shear stress for coupled lithosphere (upper row) and decoupled
lithosphere (lower row) models with o = 60°. Shown are (a) streamlines in a Newtonian fluid, () streamlines in a non-
Newtonian fluid (# = 3), and (c) isobars (solid curves) and constant shear stress contours (dashed curves) for n = 3.

er flow models for () coupled lithosphere and (b) decoupled
Josphere.

Tovish et al, JGR, 1978

Math from Turcotte and Schubert section 6.11. Torque is force x distance, so torque from tip of asthenospheric counterflow is constant downslab
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Fig. 4. Pressure (solid curves) and shear stress (dashed curves) on
the top (arc corner) and bottom (oceanic corner) surfaces of the
descending slab as functions of subduction angle o for (left) New-
tonian and (right) non-Newlonian mantles in the coupled lithosphere
(cl) model and the decoupled lithosphere (dl) model. Zero degrees
corresponds to flat subduction, 90° to vertical subduction, and 180° to
overturned subduction.

Tovish et al, JGR, 1978

OK, shows pressure on top (“arc corner”) gets very negative [as this happens, presumably load on base of lithosphere above also become very negative--i.e., pulls down]--bottom side not so strong.
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Fig. 6. The absolute values of the torques exerted on the slab by
gravity and flow pressures (7 = 3) as a function of slab dip a. Torques
are equal and opposite at angles indicated by the subscripted a’s.
Several pressure curves are shown to indicate how variations in the
relative magnitude of the gravity and pressure torques influence the
number and types of equilibrium intersections. (Top) coupled litho-
sphere model and (bottom) decoupled lithosphere model.

Tovish et al, JGR, 1978

Combining pressure from last slide with weight of slab and then calculating as a torque gives us this--the idea that there is a point where dip is unstable.
However, this analysis ignores any deformation within the slab. Although this analysis is basis for Bird’s inferences about subsidence, it is not the model

preferred by most other mantle-flow modelers.
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Similarly, we can estimate the force on the upper plate. Math from Turcotte and Schubert section 6.11. So subsidence should vary inversely to distance
from the subduction zone. A major complication is that variations in rheology will allow for this to vary a lot.



Displacement (km)

Fig. 5. Approximate estiiate of the net effect of Late
Cretaceous (including Late Maestrichtian) subsidence and
Tertiary uplift for the cross section A-A’ given in Figures 3
and 4. The base of the sequence at the end of its deposition
is shown by a. During subsequent uplift to b the surface
has uplifted to ¢c. The dashed arrows imply that the solid
arrows probably underestimate the total subsidence and
uplift.

Mitrovica et al., Tectonics, 1989

Prediction from this model is that if we remove post mid-K seds, things return to flat. Is this true? (certainly not in NE NM, maybe in some places to
north).



Fig. 10. The thermal field produced by superimposing the ¢ = 0.0, 0.25, 0.50, 0.75, and 1.0 fields of the
model of Figure 6 (At = 0.25, see text). Each field is horizontally shifted, with respect to the previous field,
by an amount equal to the width of the initial block (116 km); only a portion of the cell is shown. The

near-surface dip of the lting subduction is app ly 45°.
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Fig. 11. The topographic profile corresponding to the field
of Figure 10 (labeled a). Also shown are the deflections for
the cases of near surface dips of 60° (At = 0.33, labeled b)
and 30° (At = 0.12, labelled ¢). In all cases, D = 5 x 103
Nm. The arrow gives the position of the right boundary

of Figure 10. Mitrovica et al., Tectonics, 1989
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Fig. 16. Profile a, the lithospheric deflection profile corresponding to the subduction zone of Figure 15 except
with a dip of 60°. The sequence a, b and ¢, shows the lithospheric deflection as the subduction geometry
moves from 60° dip (a), to 25° dip (b), and back to a 60° dip (c). d gives the deflection 25 m.y. after
subduction ceases at the surface. While the basement rebounds from b to d the surface uplifts to e. As in
Figure 15, the topographic profiles are computed under the assumption that the sediment cover (of density
2.30 x 10° kg/m3) remains intact subsequent to the onset of uplift.

Mitrovica et al., Tectonics, 1989

This explicitly tested in Bogolub & Jones as well as Levandowski et al.
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Note panel in upper right has oldest time at right. Suggesting western CP has jumped up as dynamic topo ended...
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Painter and Carrapa profiles EW in Wyoming pre-81 Ma; think dynamic effects then later. Pang and Nummedal inferred dynamic subsidence starting c 84
Ma and large by 79 Ma; could also be change in flexural rigidity?
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More detailed sections help delineate major areas of subsidence. Pre-82 Ma foredeep, after that major migration east (not clear why Wyoming wasn’t
included more—other work carries these subsidence areas northward). Colored lines are shorelines.
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(e)

Working with more detailed sections allows for calculation of subsidence rates. Note vertical scale is linear in depth (thickness) while age scale varies
wildly. [’m having real problems reconciling this plot with the tectonic subsidence plots; 145 m/Ma over 1.7 Ma should be maybe 250m subsidence, but
over 600 m of section—is it really compacting that fast?]
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Location of the hingeline between the foredeep and the forebulge during the Campanian-Paleocene. The arcuate trend of the hingeline indicates the locus of greatest flexural load in the orogen—at the center of
the arc. Abbreviations: C, M, P, Campanian, Maastrichtian, Paleocene; e, E, Early; I, L, Late. The location of maximum loading shifted progressively northward during the Late Cretaceous-Paleocene (Catuneanu et al.,
1999, 2000).
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Catlimeanu et al., Geology 1997
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Lower right figure shows reciprocal stratigraphy with biozones and presence of airfall ashes from Alberta.
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Laramide Analogs

the present the key to the past?




Laramide analogs
Sierras Pampeanas Tien Shan
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Jiménez-Munt and Platt, Tectonics, 2006

Collision and “orogenic collapse”

“Flat slab” models
models




Sierra Pampeanas as an analog
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So what of this analog? Style of deformation is similar, but is that reflective of driving force or simply the way that kind of crust shortens?



Modemn South America Early Eocene, Western North America

Sierra Pampeanas as an analog

Similar structural style
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What of pre-shortening sedimentation? In Pampeanas, most sections only a few 10s of meters; up to maybe 300m in some wells. There is a ~10km deep
foredeep to the west...



Rockies has kilometers of section. Also has undeformed Colorado Plateau between foreland and thin-skinned deformation--larger than entire Pampean
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Tien Shan as analog




Tien Shan differences
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Is there an “India”?

Active shortening between collider and
foreland mountains?

Colorado Plateau as rigid as Tarim Basin?
Subsidence pre-shortening?

Dickerson, Tectonophysics, 2003




Laramide Models

what are we looking to recreate?




Bird, P, 1984, Laramide crustal thickening event in the Rocky

Mountain foreland and Great Plains: Tectonics, v. 3, no. 7, p. 741-758,
doi: 10.1029/TC003i007p00741.

What was the main criterion Bird focused on as representing the
essence of the Laramide orogeny?




Bird, P, 1984, Laramide crustal thickening event in the Rocky

Mountain foreland and Great Plains: Tectonics, v. 3, no. 7, p. 741-758,
doi: 10.1029/TC003i007p00741.

What was the main criterion Bird focused on as representing the
essence of the Laramide orogeny?

I’d say it was an increase in crustal thickness




Elements of Bird’s 1984 analysis:
Posits that the main Laramide event is thickening of
crust by average of 9 km.
Was the cause:

sediments

intrusion

shortening

crustal flow

shear of lower crust




Elements of Bird’s 1984 analysis:

Posits that the main Laramide event is thickening of

crust by average of 9 km.
Was the cause:

sediments— only averages to 200m thickness
intrusion

shortening

crustal flow

shear of lower crust




Elements of Bird’s 1984 analysis:
Posits that the main Laramide event is thickening of
crust by average of 9 km.
Was the cause:

® sediments— only averages to 200m thickness

® intrusien - small volume and no thermal anomaly
® shortening

® crustal flow

([

shear of lower crust




Elements of Bird’s 1984 analysis:
Posits that the main Laramide event is thickening of
crust by average of 9 km.
Was the cause:

sediments— only averages to 200m thickness
intrusion— small volume and no thermal anomaly
shertening-only |3% and not in Great Plains
crustal flow

shear of lower crust

Others had higher estimates of shortening than Bird; 25% in Wyoming would thicken 35 km crust to about 44 km. Still shy of Bird’s targets...



Elements of Bird’s 1984 analysis:
Posits that the main Laramide event is thickening of
crust by average of 9 km.
Was the cause:

sediments— only averages to 200m thickness
intrusion— small volume and no thermal anomaly
shertening-only |3% and not in Great Plains
erustal-flow-can't move crust far enough

shear of lower crust

(Not considered: phase changes at the Moho)




Flat slab model

w

Basal shear produces maximum
normal stress well inland

* Also connects magmatism with tectonism
 Sets up mid-Cz volcanism
* Analogs in South America

Although flat slab originally from volcanic variations, basic physics, goes back to Dickinson & Snyder (1978) and esp. Bird (1984, 1988).
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Also seems to wipe out Nevadaplano...
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...but has other issues

Bird, Science, 1988

|) Removal of lithosphere

Fig. 3. (A) Final (middle Oligocene) displacement and thickness of the mantle
layer of North America lithosphere. Thickness is contoured in 20-km intervals.




Flat slab predictions

Livaccari and Perry, Geology, 1993

Eastward limit of
significant lithospheric
thinning and crustal
refrigeration during

3. (A) Final (middle Ol disy it and thickness of the mantle |
0f(th i umﬁ“n.::.e) isplacement a knss of the mantle Sevier-Laramide orogeny|

San Andreas
transform fault

| P —
boundary zone
300 km 120° \
Slerra Nevada arc Rand-Pelona-Orocopia schist - Upper Cenozoic basalts (<5 Ma)

Region of mafic volcanic fields
<5 Ma) with asthenospheric

Region of mafic volcanic fields (<5 Ma) with
lithospheric mantle source (€ g units)

mantle source (€ unite) BP—BigPine (4)  LH—Leucite Hills (-10)  T—Taos
C—Cima (+8) MT—Mt. Taylor (+5) CF—Crater Flats {(-8) MC—McCoy (-5) Plateau
CS—Coso (+5) P—Potrillo {+7) CR—Carrizozo (0) ND—Navajo diatremes (+2) (0}
G—Geronimo (+8) SC—San Carlos (+8) D—Dotsero {-4) 0O—Ocate (+1)

GC—Grand Canyon (+6) SG—St. George (+8) | DV—Death Vailey (-8) RC—Raton-Clayton (+1)
GW—Grand Wash (+6)  SP—Springerviile (+6) | HB—Hopi Buttes (+3) SF—San Francisco (+2)
MD—Mojave Desert (+7) ZB—Zuni-Bandera (+6)] JZ—Jemez Mtns (+2) SR—Snake River (-3)
* Localitles where transition from lithospheric to asthenospheric mantle
source Is [dentified and time of transition (sz units and age of volcanics)

H H CH—Casteneda Hills, 11 - 7.5 Ma L—Lucero Mtns., 8 - 4 Ma (+3 at 8 Ma and +7 at 4 Ma)
B'rd SCIenCe 1988 (-6 at 11 Ma and +6 at 7.5 Ma) LC—Lunar Crater, 9 - 4 Ma (-4 at 9 Ma and +6 at 4 Ma)
’ ’ GB-20 to 15 Ma basalts NW of Glla Bend LM—Lake Mead ares, 12 - 5 Ma (-6 at 12 Ma and +6 at 5 Ma)
compared to <5 Ma basalts of G, SC, & SP, S—Soccoro area, <¢ Ma (-2 at >8 Ma and +5 at <9 Ma)

15 - 5 Ma (-4 at >15 Ma and +6 to +8 at <5 Ma) _U—Uvas Basalt, 27 - 10 Ma (0 at >27 Ma and +5 at <10 Ma)

So just how fatal should this be? Is it a trivial modification of Bird’s model? Or does this create a bigger problem? Is the focus on crustal thickness
misplaced? Could it be younger and sourced in the mantle?



Was focus on the Moho misleading?
Moho map of Bird (1984) Moho map of Schmandt et al. (2015)

18 25 30 35 40 45 52
Crustal thickness [km]

Schmandt map doesn’t show obvious Rockies thickening...




but Shen map does seem to show it.

Moho map of Bird (1984) Moho map of Shen et al. (2016)
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Is there intracrustal variation of importance?
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Maybe Moho isn’t as important as structure of the crust—note crustal thickness not well correlated with contribution to topography from lower crust. Solid
black line is smoothed topography.
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Levandowski et al., Geosphere, 2018

Mid-lower crust has large density variations absent at greater depths in mantle except in the RGR/southern Rockies...so *Plains* don’t seem to have
deeper support. Light gray contours show contribution to elevation...



Flat slabs elsewhere

rather than look for Laramide ranges elsewhere,
what about flat slabs elsewhere?




Sierras Pa
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Gutschler et al., 20




What do flat slabs do?
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Make things go up!?

Espurt et al., Geology, 2007

Make “fmp
things go
down? |

10°S

16°S

Liu et al., Nature Geosdi, Suppl. 5000 ~4000 -3000 ~2000 ~1000 O 1000 2000 3000 4000 5000 05 ' 0.0 105
Mat., 2010 Elevation (n) anve (%)

As an aside, the Skinner et al. 2013 paper argues that due to asymmetry in spreading in Pacific, Inca Plateau is 600 km farther east than shown here



What makes slabs go flat?
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TOpZ Fig. 4. Length of the flat slab segment at model time t = 14.4 Ma for several values of the transition temperature Ttr and average upper mantle viscosity n~ UM . Solid lines represent situations with a plateau,
dashed lines without. Only the Ttr = 600 and 700 o C cal- culations with intermediate mantle strength, and the Ttr = 800 o C with the weakest mantle show the observed characteristics at Peru, i.e. flat subduction
with a plateau, and steep without.

Bottom Fig. 5. Relative importance of the overriding plate motion and plateau subduction for modified versions of models A-C at model time t = 15 Ma. Lengths of the flat slab are for models with a ‘twice-as-
thick’ plateau (solid lines) and without a plateau (dashed lines) for several overriding plate motion adjustments (with respect to the default overriding plate motion of 3cm per year at Peru). Flat slab length
differences Lfs are measured with respect to the lengths obtained in model A-C.



Some other effects that can shallow subduction
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Fig. 6. Compilations of model calculations without an oceanic plateau. Several important model parameters are varied around the values from Peru model A. Most important
parameters are the average upper mantle viscosity n"UM, age of the slab, and overriding plate velocity vov, while eclogitisation kinetics (varied through variation in Ttr), slab yield
stress Ty and size of the weak mantle wedge seem to be of minor importance.
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Observed effect of subducting a plateau?
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Observed effect of subducting a plateau?
Carnegie Puna
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Fig. 3. Location of Pacific—Farallon/Nazca conjugate features relative to a given flat slab. We have placed points along Pacific plate bathymetric highs, and created conjugate features using standard plate reconstruction techniques and the rotation model of Miiller et al. (2008). A plot for each flat slab shows the proximity of a
reconstructed point on the bathymetric anomaly to that flat slab, plotted as a function of time. The thickness of the line scales with the crustal volume in a 100 km 200 km box around the Pacific plate conjugate point. The grey box represents the spatial and temporal extent of the flat slab from Ramos and Folguera (2009).

We expect impactors to pass through this target zone if the buoyancy hypothesis is the cause of the flat slab. The map shows the location of the flat slabs along the South American margin (Ramos and Folguera, 2009). The black triangles are the point from which our distances are calculated. See Supplementary Table 3 for
information about the conjugate points.



Where is flat slab today?

600 I I I I I

Liu et al., Nat. Geosc.,2010

Sigloch, G73,201 |

210 220 230 240 250 260 270 280

300

“Old Farallon” is basically ~1300km depth shown as pre-Laramide Farallon plate in this image (it is Mescalara in later papers , which is Jurassic). Black dots
in Liu image are “tracers" in their mantle flow model tracking the Shatsky conjugate [but there is some circularity here]



...or is it even Farallon?
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Flat slab predictions

NAVDAT ages

If buoyant plateau, effects should propagate
volc‘:?nic intrgsive N AVD AT ages

90 —

Barth et al. (2004)
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For Laramide, are there timing problems anyways? (Recall some of the subsidence stuff we looked at)



Other ideas

are we just not imaginative enough?




Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.

Maxson & Tikoff, Geology 1996

Collision predictions
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Collision and collapse predictions

Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.
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Collision and collapse difficulties

Where is collisional deformation near
margin?

Figure 2. Paleogeographic configuration of

dextral transpressional collision (“run”) of

Baja BC microplate and North America, re-

sulting in the Laramide orogeny. Baja BC is 7
inferred to have had an east-dipping subduc- 1

tion zone beneath its western edge and dex- Why WOUId SeVIer belt ShUtdown ¢
tral, transpressional fault system on its east-

ern edge, which shut off subduction-related

arc magmatism on adjacent North America
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Latest K subsidence

COMB orientation
and timing

Duration

—

So we have some contradictions. Also note Colorado Plateau, extent of arc shutdown. UNclear if schists record true flat slab



A. Shallowing subduction as North America moves westward
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Another examination of time transgression
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Use cooling ages
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So maybe there is time-transgression? This is using cooling ages...and uncertainties are kind of high. Is this really reflecting deformation or just erosion
(tilting of Plateau?)

NAVDAT ages are mostly south or far north; many of these are K-Ar or Ar-Ar ages, so wouldn’t want to go very far with that. Note that these ages are
older than intrusives to west...
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Recall this...they estimates flexural strength



Flexural estimate of lithospheric strength
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Is there a material change to the lithosphere from shallow subduction?

Attempts to measure flexural rigidity at different times—often in different places at different times. Argues that the change from Cenomanian to
Campanian is due to a change in lithospheric strength. Clearly points 6 & 7—with huge error bars—are crucial to this—eastern Green River Basin and Wind
River Basin.



Plateau subduction

attractive possibility in some other ways?
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A. 90-85 Ma: Just prior to slab segmentation
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B. ca.80 Ma: Laramide shallow slab segment subduction

destruction of deformation & unroofing
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C. ca.70 Ma: Extensional collapse starts in wake of shallow slab segment
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C. ca.70 Ma: Extensional collapse starts in wake of shallow slab segment

subduction of detritus & marine transgression starts above
tectonic fragments from collapsing arc segment
denuded arc
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Keep in mind timing problems...

SNB: Sierra Nevada batholith
SCB: Southern California batholith
PRB: Peninsular Ranges batholith
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Keep in mind timing problems...
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SCB = Southern California Batholith (Mojave and pieces on west of SAF)
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