Retrodeformable Sections in Fold-Thrust Belts

Fault-bend fold

Suppe, 1983
Fault-bend fold

Suppe, 1983
Advantages:
 Can be reconstructed from surface geology
Assumptions:
 Pervasive slip on bedding planes as rocks pass through hinges
 Slip is carried off-section (no deformation of lower plate)

Suppe, 1983

This style is usually looking to balance line lengths (length of a bed).
Fault-Propagation fold

Namson and Davis, GSA Bull., 1988 after Suppe and Medwedeff, 1984
Fig. 21: Structural interpretation of the Nandiao antiform, southern Taiwan (modified from Suppe, 1980b).

Suppe, 1983
Coalinga, California (site of 1983 earthquake)

Coalinga anticline grew in the earthquake, which lacked any surface faulting.
Fig. 16b: Wilmington Mountains; SMF, Santa Mountains; Jennings San Generalized Hills; crystalline fault; SR, San graben; fault; LA, Los Angeles; VEF, Verdugo-Eagle Mountains; SMMA, Santa moment map and Angeles Rock; WF, Whittier fault; 1987 and al.; CF, Compton Hills; T.W. Davis et al., JGR, 1989.

The risk of seismic shortening structural detachments boundary of North Davis et al., JGR, 1989.
Inbal et al. got lots of small EQs from a very dense array and see the Newport-Ingledwood fault extending into the mantle, not detached as thought by Davis et al. This helps reveal a weakness of the geometric reconstructions of fold belts: they need detachment to go off the edge of the model at the side.
So we'll transition from the Sevier to the Laramide. Consider what these faults do at depth—what is the basis for this. Note difference in thickness of the units on thrusts to west vs foreland to east.
Fault geometry in basement-cored uplifts

FORELAND STRUCTURAL MODELS

A. Drape Fold
B. Upthrust Fault
C. Thrust Uplift
D. Fold-Thrust
E. Wrench Uplift

Figure 2. Five basic models of foreland deformation are the drape fold (a), upthrust fault (b), thrust uplift (c), fold-thrust uplift (d), and wrench-related uplift (e). Models a and b after Prucha and others (1985); models c and d after Ingersoll (1962b).

Brown, GSA Mem 171, 1988

Well, as a prelude to the Laramide, let’s discuss a different flavor of this: basement cored folds.
Figure 5. A comparison of interpretations of the Soda Lakes area, Colorado, utilizing the upthrust model (a) modified from Osterwald (1981), and the fold-thrust model (b) modified from Berg (1982a). Comparison of bed-length measurements of the Dakota Sandstone (Kd) and the top of the Pennsylvanian basement between reference lines (W-X) and (Y-Z) indicates the upthrust model (c) is out of structural balance by approximately 20 percent, whereas the fold-thrust model (d) is balanced to less than 5 percent error (after Brown, 1987).
Problems with high-angle (near vertical) faulting to make these uplifts: cannot balance line lengths.
Rattlesnake Mtn
interpretation of
Brown, 1984

Rattlesnake Mtn
interpretation of
Sterns, 1971

Brown, GSA Mem 171, 1988
Rattlesnake Mtn interpretation of Brown, 1984

Rattlesnake Mt interpretation of Sterns, 1971

Rattlesnake Mtn interpretation of Erslev, 1986

A. Rattlesnake Mtn., Wyoming

B. Fault Dip Calculation

\[\triangle = \text{Hanging Wall Dip} - \text{Footwall Dip} \]

\[h = (R + A\cos\theta) \sin\triangle \]

\[S = \text{Total Shortening} \]

\[s = AB - h = (R + A\cos\theta) (1 - \cos\triangle) \]

Fault Dip Relative to Footwall = arctan \(\frac{h}{s} \)

Pierce (1946), Stearman (1971)

Erslev, Geology, 1986
Figure 1. Models of fault-propagation folds. A: Geometric kink-band model (Suppe and Medwedeff, 1984). B, C, D: Analog experimental models of folds above thrust (B; Chester et al., 1988), reverse (C; Friedman et al., 1980), and normal (D; Withjack et al., 1990) faults.