Figure 1. The Canadian Cordillera
showing terranes studied here. Rect-
angles denote sampling regions: 1—
southeastern British Columbia for
Cache Creek, Quesnel, and Koote-
nay samples (KO = Kootenay ter-
rane proper); 2—Wells-Barkerville
region for Quesnel, Slide Mountain
and  Kootenay/Cassiar-equivalent
samples; 3—Nisutlin assemblage at
Little Salmon Lake, Yukon.

Patchett and Gehrels, J. Geol. 1998
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Paleomagnetism and latitude
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A cooling igneous rock or a new
sedimentary rock can record the
direction of the magnetic field T p— P
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Magnetic Inclination in a Dipole Field
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Magnetic Declination

https://www.ngdc.noaa.gov/geomag/data/mag_maps/pdf/
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Sedimentary remanent paleomagnetism
magnetic grains

Water

Depositing
sediments

Ziegler and Kodama, Terrestrial Depositional Systems, 2017
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Mineral Composition Curie Point Origin

Magnetite Fe,O, 580°C Magmatic, occasional
metamorphic and
chemical

Titanomagnetite | Fe, Fe, Ti, O, 150-580°C “

Hematite o-Fe,0, 675°C Often sedimentary,
chemical, sometimes
magmatic, metamorphic

Maghemite v-Fe,O, 590-675°C —goes to Chemical

hematite above 250-750°C

Pyrrhotite FeS,,,, 0<x=<0.14 | 320°C Magmatic, chemical

Goethite o-FeOOH 120°C (dehydrates 100- Chemical (weathering)

300°C)

Lepidocrocite v-FeOOH Below room temperature Chemical (weathering)

(dehydrates 250°C to
maghemite)
Greigite Fe,S, ~330°C Chemical (anoxic

sediments)
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Igneous remanent paleomagnetism
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Igneous remanent paleomagnetism

O
ON
«@

M(t)= M)e—t/f

1 ()

Overprinting magnetic
remanence acquired by low-
blocking temperature
minerals




Igneous remanent paleomagnetism
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Igneous remanent paleomagnetism

So raw measurements of
rocks rarely reveals the
“original” primary
magnetization.

Demagnetization seeks
to run the acquisition of
magnetization
backwards...

Thermal demagnetization
is perhaps most intuitive

Ti In CTI = Tz lnCTz

v




Igneous remanent paleomagnetism

So raw measurements of
rocks rarely reveals the
“original” primary
magnetization.

Demagnetization seeks
to run the acquisition of
magnetization
backwards...

Thermal demagnetization
is perhaps most intuitive

Ti In CTI = T2 1nCT2

600°C

v

550°C
500°C
) 200°C
.

200°C  Even though this is most
B straightforward for
100°C igneous rocks, thermal
demagnetization often is
effective on sedimentary
rocks as well (many low-
temperature overprints
are from weathering
minerals than lose
remanence at higher
temperatures)




Demagnetization Curves
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Solid are horizontal projection, open are vertical.




Paleomagnetism tests
Fold test:

Magnetization acquired
at deposition will
maintain constant angle
with bedding
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Paleomagnetism tests
Reversal test:

Normal and reversed
directions will be
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Paleomagnetism tests
Conglomerate test:

Magnetization in cobbles
will be random if not
overprinted
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Sedimentary remanent paleomagnetism: Flattening
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Sedimentary remanent paleomagnetism: Flattening
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Remanent paleomagnetism: Hemispheric ambiguity
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In tectonically active
areas, large rotations
about a vertical axis are
possible, so could be in
either hemisphere.

Irving and Wynne, DNAG v. G-2, 1991




Igneous remanent paleomagnetism: Paleohorizontal ambiguity
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Fig. 3. Equal-area projection on the lower hemisphere, showing

site-mean directions of magnetism for the Mt. Stuart batholith.

Symbols are keyed to Fig. 4; eastern sites are shown by trian- Ague & Brandon, GSA Bu", 1996
gles, western sites by circles. The solid square represents the

Cretaceous expected direction at the present latitude and

longitude of the Mt. Stuart rocks, calculated from Mankinen

[19].

Beck et al., EPSL, 198

Attention focused on one pluton for what could be wrong in pmag...



Igneous remanent paleomagnetism: Paleohorizontal ambiguity
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Fig. 6. A tilt solution. Circle is the Cretaceous expected direc-
tion, with circle of confidence: triangle is the observed dircc-
tion for the Mt, Stuart Batholith, also with circle of confidence.
A rotation of 34.5° about a fold-axis trending N59W will bring
the two into coincidence. Tilt to the southeast or west does not
reduce the discordance.

Fig. 5. A tectonic-transport (“microplate™) solution. MSL=
location of Mt. Stuart Batholith; MSP = Mt Stuart
paleomagnetic pole; K= Cretaceous reference pole for North
America. The heavy curve bisects the distance between K and
MSP and therefore is the locus of all possible Euler poles about
which K can be displaced to MSP by a single finite rotation.
The triangle shows the unique rotation pole that results from
assuming that the Mt. Stuart Batholith originated on the edge
of North America. MSL is shown rotated back to western
Mexico about this pole.

Beck et al., EPSL, 1981

could translate or tilt....




Igneous remanent paleomagnetism: Paleohorizontal ambiguity

Fig. 5. A tectonic-transport (“microplate”) solution. MSL.=
location of Mt Stuart Batholith; MSP = Mt. Stuart
paleomagnetic pole: K =Cretaceous reference pole for North
America. The heavy curve bisects the distance between K and
MSP and therefore is the locus of all possible Euler poles about
which K can be displaced to MSP by a single finite rotation.
The triangle shows the unique rotation pole that results {from
assuming that the Mt. Stuart Batholith originated on the edge
of North America. MSL is shown rotated back to western
Mexico about this pole.
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Fig. 6. A tilt solution. Circle is the Cretaceous expected direc-
tion, with circle of confidence: triangle is the observed dirce-
tion for the Mt. Stuart Batholith, also with circle of confidence
A rotation of 34.5° about a fold-axis trending N59W will bring
the two into coincidence. Tilt to the southeast or west does not
reduce the discordance.

Beck et al., EPSL, 198l

Figure 10. Depth contours computed from the best-fit paleo-
surface by determining the intersection of the present topography
with surfaces of constant crystallization depth (cf. text and Fig. 2A).

Ague & Brandon, GSA Bull, 1996




