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Of the form:
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depth
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12% is the soil water content when soil CO2
fluxes go to zero - this is just drier than the 
permanent wilting stage
40% is near field capacity - when the 
prescribed CO2 fluxes occur
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Based off of 1000 observations of soil 
surface CO2 fluxes in the FIFE area (central
Kansas), Norman et al., 1992 set

a’ = 12.1
c’ = 0.0365
Ts,ref = 26.0
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However, for  these observations, Ts,10 varied only 
between 20°C and 30°C
Another study by Grammerer, 1989 made 
observations between 3°C and 30°C which gave 
different values for c’ and Ts,ref

Changes c’ = 0.069, Ts,ref = 25, and a’ = 11 to best 
fit the 1000 observations with the new c’ and Ts,ref
based on Grammerer’s study
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Forms the equation
Fcss = 11(Θ20 - 12)/(40-12)e0.069(T

s,10
- 25) 

This form of the equation was used in 
GEMTM when it was first built
However, the value of a’ was based only on 
one vegetation type (tall grass) in central 
Kansas
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The parameter a’ is the product of the 
heterotrophic respiration rate Kd at 0°C and 
Cs, the carbon in the soil and detritus (dead 
or decaying organic matter)
At present in GEMTM, a’ is based off of 28 
different vegetation types with values 
ranging from 0.4161 to 6
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The blue represents 
the range of values of 
a’ used in GEMTM
The red is if the values 
of Kd and Cs are each 
increased by 10%
The yellow is if the 
values of Kd and Cs are 
each decreased by 
10% 
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1 evergreen needleleaf tree
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17 evergreen broadleaf forest
18 deciduous needleleaf forest
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22 wooded grassland
23 closed shrubland
24 open shrubland
25 grassland
26 cropland (corn)
27 bare ground
28 urban and built up
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The default in GEMTM 
uses vegetation types 1 -
15,22,27, and 28
Many of the different 
vegetation types use the 
same value for a’
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a’ is very uncertain and varies according to 
soil type and vegetation
Another set of values comes from Raich and 
Schlesinger, 1992

Uses more values from North America, Europe, 
and Asia
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Vegetation type
1 tundra
2 boreal forests and woodlands
3 temperate grasslands
4 temperate coniferous forests
5 temperate deciduous forests
6 mediterranean woodlands and heath
7 croplands, fields, etc.
8 desert scrub
9 tropical savannas and grasslands

10 tropical dry forests
11 tropical moist forests
12 northern bogs and mires
13 marshes
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are needed to see this picture.
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Depends on the observations and the soil 
temperatures of the observations
Initially taken to be 26ºC based on soil 
temperatures between 20ºC and 30ºC
Changed to 25ºC based on temperatures 
between 3ºC and 30ºC
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As temperature 
increases, the 
dependence on Ts,ref
increases
A 10% decrease in 
Ts,ref can lead to a 20% 
increase in respiration 
due to the exponential
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The value of c’ also depends on the 
observations and the soil temperatures of 
the observations
Initially, c’ = 0.0365 based on temperatures 
between 20°C and 30°C from Norman et al., 
1992
Changed to 0.069 based on observations 
between 3°C and 30°C by Grammerer, 1989
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Red colors are air 
temperatures greater than 
30°C on 21 April 2006 at
19:00 UTC
For these regions the 
temperature range for
which c’ was calculated 
my not apply depending 
on how these warm 
temperatures transfer 
through the soil
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Similar issue appears 
in Africa
Is c’ valid for these 
warm regions?
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For soil temperatures 
very near the reference 
temperature, variations 
in c’ are unimportant
At temperatures away 
from the reference 
temperature, variations 
in c’ can make a large 
difference since c’ is 
in an exponential
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The temperature sensitivity of soil 
respiration can be affected by:

1. Physical protection
2. Chemical protection
3. Drought
4. Flooding
5. Freezing
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Physical protection
Organic matter physically protected in the 
interior of soil aggregates; microorganisms and 
enzymes have limited access
Climate can affect aggregate formation through 
the action of raindrops and the growth of fungal 
hyphae
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Chemical Protection
Organic matter adsorbed onto mineral surfaces 
through bonds
This process also affected by temperature
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Reduces the thickness of soil water films, 
inhibiting diffusion of extracellular enzymes 
and soluble organic-C substrates
Determined by climate-driven hydrologic 
balance
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Flooding
Slows oxygen diffusion, allowing only 
anaerobic decomposition which is generally 
slower
Flooding determined by precipitation and 
evapotranspiration
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Freezing
Diffusion of substrates and extracellular 
enzymes is slow when the soil water is frozen
Melting of permafrost will expose additional 
organic matter
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Relationship of soil 
water content to 
respiration is linear in 
GEMTM
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In other models, 
relationship is different
In dry regions, drought 
prevents much microbial 
activity in the soil
When too much soil water 
content, microbes drown 
and cannot decompose 
soil organic matter and so 
produces a reduction in 
soil respiration
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to increase as soil 
water content 
increases
Neglects the affect of 
flooding and limitation 
to anaerobic 
respiration only
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Much of the parameterization is already in 
the form of a look up table due to the 
dependence of a’ on biome type
The model knows what the simulated 
vegetation type is and goes to an array of 
values and picks out the a’ that corresponds 
to that type
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Could have a look up table for the exponential 
function
The rest of the parameterization is linear and not 
much would be gained by a look up table
The computer would not need to recompute 
exponentials every time it runs the program for 
each temperature
Accuracy of this method depends very much on 
temperature and becomes less accurate as 
temperature increases
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Soil respiration in GEMTM based on 5 parameters
Format of current parameterization based on 
observations in central Kansas with limited soil 
temperature, soil type, and vegetation type
Parameters are highly variable depending on
temperature, soil type, and vegetation type
Need different values for different geographical 
locations
Soil respiration is much more complex than what 
is accounted for in parameterizations
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