The Purdue Lin Microphysics Scheme in WRF

Russ Schumacher AT 730 Final Project 26 April 2006

Overview

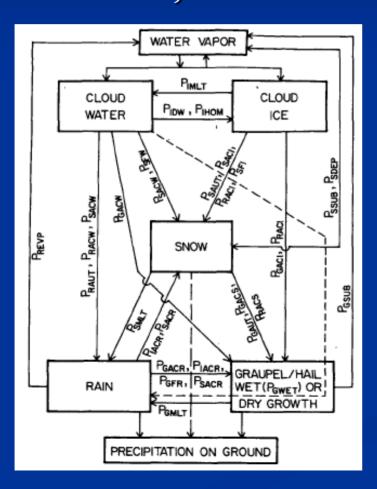
Introduction to microphysics schemes
Introduction to the Purdue Lin scheme
Tunable coefficients, inputs & outputs
Sensitivity to the input coefficients
LUT feasibility

Explicit microphysics schemes

- These schemes are used to parameterize the various forms of water substance at a grid point in a numerical model
 - Vapor
 - Cloud Water
 - Cloud Ice
 - Rain
 - Snow
 - Hail
- Some schemes include all of these species, others neglect some of them
- Most schemes are "bulk" schemes, meaning that a particle size distribution is assumed and mass-weighted mean terminal velocities are used

Schemes available in WRF

Scheme	Number of Variables	Ice-Phase Processes	Mixed-Phase Processes
Kessler	3	Ν	Ν
Purdue Lin	6	Υ	Υ
WSM3	3	Y	Ν
WSM5	5	Y	Ν
WSM6	6	Υ	Υ
Eta GCP	2	Υ	Y
Thompson	7	Υ	Υ


■ WRF recommendation: for ∆x < 10 km, a scheme including mixed-phase processes should be used, otherwise it is not worth the added expense</p>

- Most of these schemes are "single-moment" schemes, meaning that only the total mixing ratio is predicted
- Double-moment (prediction of number concentration) and triple-moment (prediction of mean diameter) schemes are gaining favor

The Purdue Lin Scheme

- 2-D microphysics scheme introduced by Lin et al. (1983), and Rutledge and Hobbs (1984)
- Was one of the first schemes to parameterize snow, graupel, and mixed-phase processes (such as the Bergeron process and hail growth by riming)
- Has been used extensively in research studies and in mesoscale NWP
- The version used in WRF has been modified slightly from the original formulation; it was taken from the Purdue cloud model and is documented in Chen and Sun (2002)
- In WRF, microphysics is integrated outside of the RK3 scheme, so that saturation remains correct

Mixing ratios of cloud water, cloud ice, non-precipitable water, rain, snow, and graupel are predicted at each grid point based on advection, production, and fallout

Symbol	Meaning		
PIMLT	Melting of cloud ice to form cloud water, $T \ge T_0$.		
P _{IDW}	Depositional growth of cloud ice at expense of cloud water.		
P _{IHOM}	Homogeneous freezing of cloud water to form cloud ice.		
PIACR	Accretion of rain by cloud ice; produces snow or graupel depending on the amount of rain.		
PRACI	Accretion of cloud ice by rain; produces snow or graupel depending on the amount of rain.		
PRAUT	Autoconversion of cloud water to form rain.		
PRACW	Accretion of cloud water by rain.		
PREVP	Evaporation of rain.		
PRACS	Accretion of snow by rain; produces graupel if rain or snow exceeds threshold and $T < T_0$.		
PSACW	Accretion of cloud water by snow; produces snow if $T < T_0$ or rain if $T \ge T_0$. Also enhances snow melting for $T \ge T_0$.		
PSACR	Accretion of rain by snow. For $T < T_o$, produces graupel if rain or snow exceeds threshold; if not, produces snow. For $T > T_o$, the accreted water enhances snow melting.		
PSACI	Accretion of cloud ice by snow.		
	Autoconversion (aggregation) of cloud ice to form		
PSAUT	snow.		
PSFW	Bergeron process (deposition and riming)-transfer of cloud water to form snow.		
P _{SFI}	Transfer rate of cloud ice to snow through growth of Bergeron process embryos.		
PSDEP	Depositional growth of snow.		
P_{SSUB}	Sublimation of snow.		
PSMLT	Melting of snow to form rain, $T \ge T_0$.		
P_{GAUT}	Autoconversion (aggregation) of snow to form graupel.		
P_{GFR}	Probabilistic freezing of rain to form graupel.		
PGACW	Accretion of cloud water by graupel.		
PGACI	Accretion of cloud ice by graupel.		
P_{GACR}	Accretion of rain by graupel.		
PGACS	Accretion of snow by graupel.		
PGSUB	Sublimation of graupel.		
PGMLT	Melting of graupel to form rain, $T > T_0$. (In this regime, P_{CACW} is assumed to be shed as rain.)		
P _{GWET}	Wet growth of graupel; may involve P_{GACS} and P_{GACI} and must include P_{GACW} or P_{GACR} , or both. The amount of P_{GACW} which is not able to freeze is shed to rain.		

Particle Size Distributions

 $n_R(D) = n_{0R} \exp(-\lambda_R D_R),$ $n_S(D) = n_{0S} \exp(-\lambda_S D_S),$ $n_G(D) = n_{0G} \exp(-\lambda_G D_G),$

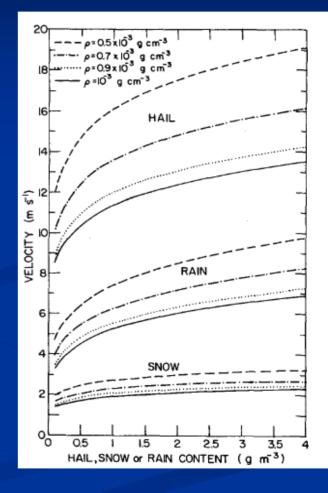
- Intercept parameters:
 - $n_{0R} = 8 \ge 10^6 \text{ m}^{-4}$ (Marshall and Palmer 1948)
 - $n_{0S} = 3 \ge 10^6 \text{ m}^{-4}$ (Gunn and Marshall 1958)
 - n_{0G} = 4 x 10⁴ m⁻⁴ (Federer and Waldvogel 1975) OR n_{0G} = 4 x 10⁶ m⁻⁴ (Houze et al. 1979; WRF default)
- Slope parameters:

 $\rho_{W} = 1000 \text{ kg/m}^{3}$

 $\rho_{s} = 100 \text{ kg/m}^{3}$

$$\begin{split} \lambda_R &= \left(\frac{\pi \rho_W n_{0R}}{\rho l_R}\right)^{0.25},\\ \lambda_S &= \left(\frac{\pi \rho_S n_{0S}}{\rho l_S}\right)^{0.25},\\ \lambda_G &= \left(\frac{\pi \rho_G n_{0G}}{\rho l_G}\right)^{0.25}, \end{split}$$

• $\rho_G = 917$ (Lin et al.) OR 400 (Rutledge and Hobbs) kg/m³


Terminal Velocities

 Terminal velocity of each species is dependent on particle diameter

$$U_{DR} = aD_R^b \left(\frac{\rho_0}{\rho}\right)^{1/2},$$
$$U_{DS} \approx cD_S^d \left(\frac{\rho_0}{\rho}\right)^{1/2},$$
$$U_{DG} = \left(\frac{4g\rho_G}{3C_D\rho}\right)^{1/2} D_G^{1/2}.$$

 a, b, c, d, C_D are prescribed constants
 These are integrated to get massweighted mean terminal velocities:

$$\begin{split} U_R &= \frac{a\Gamma(4+b)}{6\lambda_R^b} \left(\frac{\rho_0}{\rho}\right)^{1/2},\\ U_S &= \frac{c\Gamma(4+d)}{6\lambda_S^d} \left(\frac{\rho_0}{\rho}\right)^{1/2},\\ U_G &= \frac{\Gamma(4,5)}{6\lambda_G^{0.5}} \left(\frac{4g\rho_G}{3C_D\rho}\right)^{1/2}. \end{split}$$

Production terms

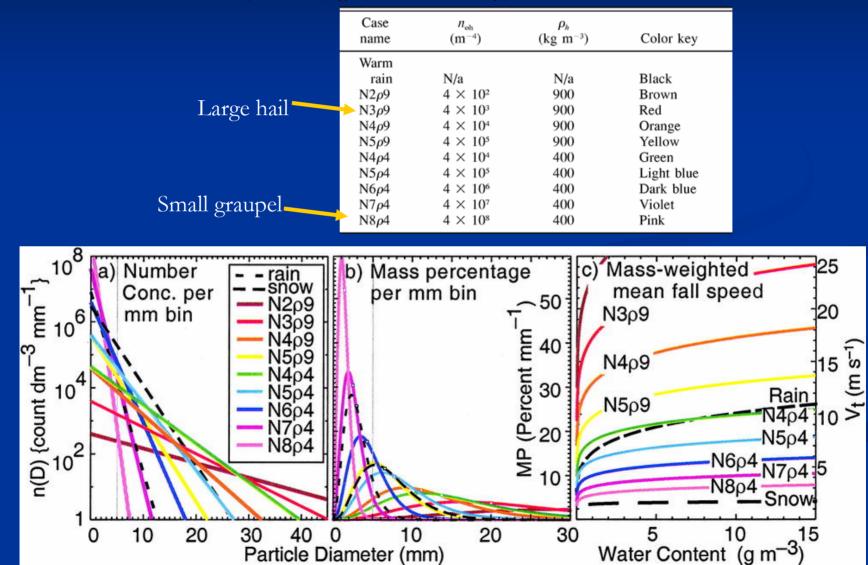
 An example for rain production: If T>273.15 K,

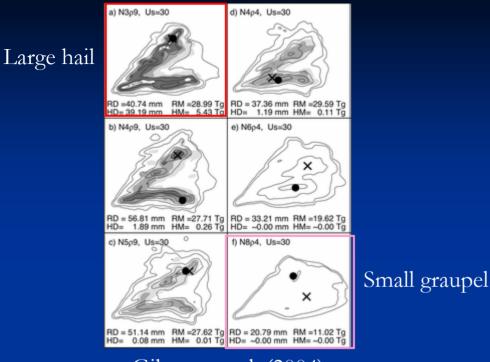
Production = autoconversion + accretion of cloud water + melting of graupel + melting of snow – evaporation of rainwater

Autoconversion (collision-coalescence):

 $P_{\text{RAUT}} = \rho (l_{CW} - l_{W0})^2 [1.2 \times 10^{-4} + \{1.569 \times 10^{-12} N_1 / [D_0 (l_{CW} - l_{W0})]\}]^{-1},$

Accretion:


Evaporation:


$$P_{\text{RACW}} = \frac{\pi E_{RW} n_{0R} a l_{CW} \Gamma(3+b)}{4 \lambda_R^{3+b}} \left(\frac{\rho_0}{\rho}\right)^{1/2},$$

$$P_{\text{REVP}} = 2\pi (S-1)n_{0R} \bigg[0.78\lambda_R^{-2} + 0.31S_c^{1/3}$$

$$\Gamma[(b+5)/2]a^{1/2}\nu^{-1/2} \bigg(\frac{\rho_0}{\rho}\bigg)^{1/4}\lambda_R^{-[(b+5)/2]} \bigg]$$
$$\times \bigg(\frac{1}{\rho}\bigg) \bigg(\frac{L_v^2}{K_a R_w T^2} + \frac{1}{\rho r_s \psi}\bigg)^{-1},$$

Sensitivity to prescribed constants

Gilmore et al. (2004) examined sensitivity to changes in n_{0G} (hail size distribution) and ρ_G (hail density)

Gilmore et al. (2004)

- Simulations biased toward large hail produce stronger cold pools and the most accumulation of hail at the surface; rainfall is maximized in between
- They suggest that single-moment schemes not be used for real-time, cloud-resolving QPF: uncertainties in microphysics are too great
- Can be suitable for research use, however, since researchers can "tune" the parameters to their particular application
- Van den Heever and Cotton (2004) found generally similar results with the RAMS microphysics scheme

Feasibility of LUT approach

- A LUT could be created and used relatively easily for the terminal velocities of rain, snow, and graupel:
 - U_R depends only on density of air and rainwater mixing ratio (similar for U_G and U_S)
 - Recall figures from previous slides: these LUTs have essentially already been created, but in WRF the terminal velocities are still computed each timestep
 - The computational savings from this would be relatively minor

Feasibility of LUT approach

- The creation of a LUT would be more daunting for the rest of the scheme, but could produce substantial computational savings if achieved:
 - 27 production terms; each of which would require its own LUT
 - Some of these terms have only one or two independent variables, but most have 4 (T, ρ, and mixing ratio of two forms, plus several prescribed constants)
 - Fortunately, these variables all have a relatively limited range of possible values
 - To get the final result, almost all of the production terms involve addition, so errors would not grow exponentially

