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Overview

• Stability analysis of sub-grid scale 
mixing

• Review options for explicit vertical 
mixing in WRF

• Evaluate PBL schemes



Intro to Vertical Mixing in WRF

• Explicit Spatial Diffusion
– Used when most boundary layer eddies can be  

resolved by the dynamics of the model (∆x,∆y ~ 
∆z)

– Assume fully three-dimensional local sub-grid 
turbulence

• PBL Parameterization
– Clear scale separation between sub-grid eddies 

and resolvable eddies (∆x,∆y > ∆z)
– Full physics Numerical Weather Prediction mode
– Local and non-local closure schemes



Explicit Vertical Mixing

• The goal of explicit schemes is to estimate the 
vertical eddy viscosity (Kv) for the diffusion terms
of the the dynamical equations (the momentum 
equation for example), without additional physics 
to compromise computational efficiency
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Numerical Stability Analysis
• Linearize prognostic equation for model variable ‘a’ with the 

following assumptions until left with a simplified diffusion 
equation:
– One-dimensional (vertical)
– Kv, µ, α constant in space and time
– Let C = Kvg2α-2 = constant
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- Use a finite difference scheme that is forward in time, centered in 
space.  This is natural for diffusion since it is a symmetrical process.

- Apply von Neumann’s method.

ŵn+1 = λŵn , where λ  is the amplification factor
- Rewrite finite difference equation, require that abs(λ) ≤1 for stability, let C 
absorb ∆t / (∆η)2 for simplicity.  
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- Look for wavelike solution to w.  
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n = ŵneik (z−1)∆η



λ = 1− 4C sin2 k∆η
2







- Substitute wave solutions into finite difference equation, cancel terms.

- Simplify using Eulers method.

λ −1 = 2C cos k∆η( )−1( )
- Apply trigonometric identity.  

λ −1 = C eik∆η − 2 + e− ik∆η( )

- Instability can occur if λ<-1.  

λ = 1− 4C sin2 k∆η
2






< −1

= C sin2 k∆η
2






>

1
2

   or  C sin2 k∆η
2






≤

1
2

 for stability



-The worst case scenario is sin2(k∆η/2)=1, which occurs for the shortest 
resolvable wave L=2∆η=2π/k.  
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- We conclude that the time step is proportional to square of vertical grid 
spacing and inversely proportional to eddy diffusivity. So if the grid 
spacing is reduced by half then we must equivalently reduce the time 
step by one quarter to maintain the minimum level of stability.



Options for Explicit Vertical Mixing

• 3D Smagorinsky Closure
• Prognostic TKE Closure
• Both of these schemes assume local 

mixing only



3D Smagorinsky Closure
• Relates mixing coefficients to the fluid deformation 

rate
• The equation for eddy diffusivity is based on 

properties of flow
• Several authors have demonstrated sensitivity of 

simulated squall lines to Cs
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Example of sensitivity to Cs from 
Takema and Rotunno (2003)



Prognostic TKE Closure
• Solve prognostic equation for TKE and then plug solution into equation for 

eddy viscosity
– Has the advantage of capturing the physical processes that govern the 

evolution of turbulence throughout the boundary layer for most 
atmospheric conditions

– Includes a budget for transient and diffusive effects of turbulence, and 
production and dissipation of turbulence

• Designed for high-resolution cloud-resolving and eddy-resolving 
simulations
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Ck →  controls amount of physical diffusion, 
           optimal value reduces need for numerical filter,
           insufficiently high value yields poorly resolved grid-scale features (noise)



TKE Formulation
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PBL Schemes

• Medium Range Forecast Model (MRF)
PBL

• Yonsei University (YSU) PBL
• Mellor-Yamada-Janjic (MYJ) PBL



MRF PBL

• Based on Troen and Mahrt (1984) non-local 
K scheme

• Rapid non-local mixing transports 
heat/moisture away from surface
– Better representation of large scale precipitation 

but not convective precipitation
• Represents mixed layer and free atmosphere 

separately
• Treats entrainment as part of PBL mixing, 

estimates PBL top from bulk Richardson 
number and virtual potential temperature



- Turbulent diffusion has terms for local and non-local mixing.  
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- Eddy diffusivity in the boundary layer is 
based on an idealized profile that is 
continuous with height and consistent with 
values at the top of the surface layer.  

-Eddy diffusivity for heat (Kz,t) obtained 
from Prandtl number and eddy diffusivity 
for momentum (Km,t)



YSU PBL
• Next generation MRF
• Explicit representation of entrainment derived 

from large eddy simulation
• Alleviates problem of excessive entrainment 

during early PBL growth
• Adds non-local momentum mixing for more 

realistic wind profile in PBL
• Removes influence of convective velocity on 

surface stress, which increases daytime low-
windspeed bias



MYJ PBL
• Original level 2.5 scheme for neutral/stable BL with 

modifications for full range of turbulence
– Upper limit on length scale ∝ TKE/buoyancy/shear
– Require non-singular TKE production for growing turbulence
– (w’2/TKE)> (w’2/TKE)vanishing turb
– New empirical constants that do better job relating 

Kolmogorov and Rotta length scales to the master length 
scale for unstable boundary layer

• 1.5 order local K scheme for entire atmospheric column
– Similar formulation as prognostic TKE scheme for explicit 

diffusion except designed for large grid spacing and has 
more sophisticated formulation for proportionality constant of 
eddy diffusivity equation



Summary of PBL Schemes


