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Introduction 

 

1. Why inverse modeling and data assimilation in the Earth 

System sciences? 

This question could be answered in two ways depending on whether one is 

starting form the point of view of modeling or the need to produce quasi-

continuous environmental data on a spatio-temporal grid. Both views are 

presented in the following. 

 

1.1 Modeling in the Earth System Sciences 

Physical theories in the Earth System sciences are designed to explain and 

possibly predict natural phenomena. The explanation by a  theory is also a form of 

prediction as it states certain consequences for certain causes. Both, the explanation and 

prediction typically  include quantitative representation of the natural system state. 
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Quantitative assessment of the actual, true, state is fundamentally achievable  only by 

measurements. The Geophysical theories are consequently designed to explain and 

predict the measurements.  

The theories are most often expressed in a form mathematical relationships which 

define a model. The model in general represents governing physical laws and includes a 

set of quantities which entirely define the state by the model. The defining quantities are 

called control parameters. The control parameters are initial and boundary conditions, 

external forces and other physical quantities which define medium or environment for a 

process that is modeled.   

The quantification of the system state by application of an assumed set of control 

parameters by the governing laws is called forward model of the system state or 

simulation of the measurements. Obviously, under conditions of well known governing 

laws and accurate quantification of the control parameters the forward model would 

produce accurate simulation of the measurements and would have ability to predict future 

states. It is common, however, that the governing physical laws are known but the control 

parameters values are not. This condition occurs in variety of models which are based on 

application of fundamental laws for macro scale phenomena such as conservation of 

energy and mass,  propagation of energy through media and bulk energy and mass 

transformations.  Examples of this type of model are found across the Geoscience 

disciplines such as in the Atmospheric Sciences, Oceanography, Biogeochemistry and 

Hydrology. What is typically not well known are initial and boundary conditions, some 

external forcing mechanisms and bulk properties of the medium in parameterized energy 

and mass transformations.   
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Because the model simulates the measurements, it is natural to ask whether there 

is a formal and objective way to use the measurements to infer the correct control 

parameter values for the model?  This problem is called inverse problem or inverse 

modeling problem.  When there is a need to use the measurements to infer the control 

parameters frequently in a quasi continuous manner over time the inverse modeling 

problem is often referred to as data assimilation.  Thus, the first way of answering the 

question “Why inverse modeling and data assimilation in the Earth System sciences?” is   

 

To objectively correct modeled state of the system or a component of it by using 

measurements, such that the model could be effectively used to analyze and predict 

the system. 

 

The concept of  inverse modeling and data assimilation for the purpose of 

improving model simulation and prediction has been used first in physical sciences in  

17-th century in works by Euler, Lagrange and Laplace  on calculating orbits of celestial 

bodies (Lewis et al, 2006). Gauss first formally described a method of data assimilation 

in his book on “Theoria Modus Corporum Coelestium” written in 1809. The data 

assimilation approach by Gauss is summarized in the following quote from the book: 

“ If astronomical observations and other quantities on which the computation of 
orbits is based were absolutely correct, the elements aso, wheter deduced from three or 
four observations, would be strictly accurate, so for indeed as the motion is supposed to 
take place exactly according to the laws of Kepler, and, therefore, if other observations 
are were used, they might be confirmed but not corrected. But since all our observations 
and measurements are nothing more than approximations to the truth, the same must be 
true of all calculations resting on them, and the highest aim of all computations made 
concerning concrete phenomena must be approximate, as nearly as practicable, to the 
truth. But this can be accomplished in no other way than by suitable combination of more 
observations than the number absolutely required for the determination of the unknown 
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quantities. This problem can only be properly undertaken when an approximate 
knowledge of the orbit has been already attained, which is afterwards to be corrected so 
as to satisfy all the observations in the most accurate manner possible.”  

 

In the chapter 3 we come back to the Gauss description of the data assimilation 

problem as it includes not only statement of the fundamental purpose of solving the 

problem but also key properties of the measurements and model. Since mid 19-th century 

the inverse modeling and data assimilation methodology continued to develop mostly in 

technical engineering applications where the primary problem was to either optimize a 

controlled system performance or to devise inference of signal over noise for 

measurements of dynamical systems (Jazwinski, 1970).   

In the Geosciences the data assimilation for improving the model simulations was 

first explicitly used in 1980-es in Numerical Weather Prediction (NWP), where there is 

direct need to improve initial conditions  to improve forecast skill (Daley, 1990; Kalnay, 

2004). More recently, new research is being performed in which other than initial 

condition parameters are improved by the inverse modeling and data assimilation 

methods (Braswell et. al, 2005; Vukicevic et al., 2000). 

 

1.2 Environmental data by the data assimilation 

 

The repeated data assimilation in the NWP applications naturally resulted in a 

time record of the Atmospheric states which have been used as data for other than 

weather forecast purposes.  For example, the weather analysis data are used in physical 

analyses of short term weather phenomena as well as in climate analysis and research on 

the climate processes. In late 1990-es the data assimilation emerged as necessary 
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procedure in most other analysis of the Earth System states such as the analysis of 

oceans, land surface, soil,  atmospheric trace gasses and particulates, land hydrology and 

biogeochemistry. Every one of these data analysis includes a model which control 

parameters are repeatedly corrected by the assimilation of measurements.   

 
Examples of the Earth System data types containing temporally and spatially distributed 

physical quantities produced by some type of data assimilation are: 

 

Ocean physical state data of   
• velocity components 
• pressure 
• density 
• temperature  
• salinity 

 
Ocean biological and chemical state data of 

• concentration fields of nutrients 
•  plankton 
• dissolved and particulate matter 

 
Atmospheric physical state data of 

• temperature 
•  pressure 
•  wind 
•  humidity 
•  cloud properties 
•  precipitation 

 
Atmospheric chemical state and particulates data of 

• concentration of trace gasses  
• aerosols 

 
Land surface state data of 

• temperature 
•  moisture 
•  fluxes of gasses and energy 
•  optical and physical characteristics 
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Land biosphere data of  
• land cover 
• physiological characteristics of plants 

 
Land hydrology data of 

• hydraulic conductivity  
• capillary pressure  
• drainage coefficient in wetland areas 
• leakage coefficient for river  
• runoff 

 
Soil state data of  

• temperature 
• moisture  
• physical and chemical characteristics   

 
  

These data are produced at operational environmental data centers and/or at 

sponsored national institutes and University research centers. In the USA the  

environmental data centers are sponsored or contained within all major national agencies: 

NOAA, NASA, DOE and  DOD.   

 

Thus, the second way of answering the question  “Why inverse modeling and data 

assimilation in the Earth System  sciences?” is   

 

To produce quasi continuous fields of spatially and temporally distributed data of 

the Earth System, such that these data could be effectively used for the assessment 

of the system and for prediction.  
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2. Inverse problem basics 

2.1  Parameter and model space 

Let a model within scope of the Geoscience problems be denoted )(mφ with 

control parameters , where  is a set of physical quantities.  For each choice of the 

parameters, which is the quantitative specification of the elements of , there is different 

realization or simulation with 

m m

m

φ . The space or manifold spanned by the different values 

of  is called parameter space. The parameter space is populated with possible values 

of the parameters. The existence of the parameter space (i.e., the many possible values) 

implies both the possibility of different parameter values for the modeled natural system 

and the stochastic nature of the parameter quantities. It is shown later in this chapter that 

the two causes for the existence of the parameter space cannot be easily distinguished in 

the inverse problem. The consequence of the parameter space is, however,  the same. 

That is the quantitative result of 

m

)(mφ  for different choices of the parameter values 
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renders a space or manifold, called the model space. Because the fundamental property of 

model is to predict measurements, the existence of space of φ  is interpreted as the 

existence of different possible simulations of measurements by the model which by 

design is intended to represent the same governing laws as the natural system that is 

measured. This intent is not necessarily always realized.  

 

2.2  Measurement space 

 

The measurement space is simpler to define than the parameter space. It is the 

space spanned by possible values of the measured quantity within the uncertainty range 

of the measuring procedure. The measuring procedure could include multiple 

measurements of the same quantity or  multiple measurements of different quantities but 

for the same realization of the natural system. In the latter case the measurements 

constitute a multidimensional space similar to the control parameter set. In the oscillator 

model (1.1) there is only one dimensional phase space represented by χ . The measurable 

quantity in this example is  )( iτχ , where iτ  is discrete time. 

In the inverse problem there is explicitly derived dependency of the parameter to 

measurement uncertainty which is presented in the next section. Here the interest is to 

discuss the consequence of  existence of the measurement space spanned by the 

measurement uncertainties. The range of control parameter values which would result 

from the measurement uncertainty is interpreted as in the forward problem as the range of 

uncertainty on the parameters. This property emphasizes the critical property of the 

modelization of the natural systems: When it is necessary to solve the inverse problem in 

 9



the process of understanding and modeling of the natural system, the uncertainties in 

the measurements would render the uncertainties in estimates of what controls the 

system as hypothesized by the system model.  

 

           The parameter space which results from the variable external causes leading to the 

variable parameter values is related to the measurement space in more complex way than 

the measurement uncertainties. Each individual measurement is a recorded quantity of a 

response of an instrument to the medium that is measured. The medium when measured 

is at one specific state after one realization of the possible external cause. In order to 

capture natural variability of the parameters in the inverse problem solution which is 

caused by conditions external to the model, it is necessary to evaluate it from many 

measurements and different state realizations. It is shown later that validity of an 

evaluated range of actual variability in the inverse problem solution would depend on 

three factors:  1) abundance of measurements, 2) size of measurement errors and 3) 

strength of sensitivity of the forward model to the control parameters.  Analysis of impact 

of each of these factors is important subject in specific applications as it addresses 

potential to distinguish different causes of the natural phenomena by the specific model 

and available measurements. 

 

2.3 Probabilistic nature of information in the inverse problem 

 

The property of measurements to always have errors makes them random or 

stochastic quantities. Consequently, the model control parameters which would be 
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derived from the inverse problem solution using the measurements would also be random 

quantities.  Even without the inverse problem the model control parameters could be 

random quantities if their values are uncertain. The random quantity, also called the 

stochastic quantity, is a quantity which exact value is not known or predictable. What is 

known about the random quantity is a possible value from a range with an associated 

probability. Because the measurements and control parameters are by design the 

stochastic quantities, relationships between these quantities in the inverse modeling 

problem and applications in the data assimilation problems must be derived based on the 

relationship between the associated probabilities.  

 

2.3.1 Interpretation of probability 

 

          First,  let A  be realization of a stochastic physical quantity with the numerical 

value from within an interval ),( dxxx + . If  there are many realizations of A , it would 

be  possible to derive probability of A  as chance of occurrence of A . A  is then an event 

with probability  for which the following classical axioms of probability apply )(AP

 

0)0(
0)(

=/
>

P
AP

                                                                                 (1.3) 

 

If A  and B are disjoint events  

 

)()()( BPAPBAP +=∪                                                                     (1.4) 
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If A  and B are not disjoint events  

 

)()()()( BAPBPAPBAP ∩−+=∪                                                 (1.5) 

 

where is joint probability  )( BAP ∩

 

A distribution of probabilities over the space of possible values of A  defines the 

probability distribution on that space. Another important function associated with the 

stochastic quantity and its probability distribution is the probability density  which 

satisfies   

)(xp

∫=
A

dxxpAP )()(                                                                                   (1.6) 

where x  represents coordinates, indicating that in the general case, the event A  is a set 

of physical quantities included in A, such as the set of control parameters or set of 

measurements.  The probability density function is of critical importance in the 

description of the stochastic quantities because when it is known they are completely 

described. 

               There is another intuitive way to interpret the probability of stochastic physical 

quantity in the inverse modeling problem. The probability could be defined as in 

Tarantola (2005) as : “ subjective degree of knowledge of the true value”. It is somewhat 

difficult to understand the emphasis on subjective knowledge in the Tranatola’s 

definition, but it is instructive to consider the interpretation of probability which uses the 

reference to the truth. In this approach the uncertainty or error which renders the physical 
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quantities stochastic is measured as deviation from the truth. It is shown later that even 

when the truth is not known, which is most of the time, the uncertainty defined as 

deviation from the truth could be sensible approach to interpreting the probability in the 

results of the inverse modeling problems. The probabilistic variables and relationships 

(1.3 – 1.6) are the same for either interpretation of the probability. 

 

 

2.4  General inverse problem and solution 

 

2.4.1 Conditional probability 

 

The key relationship which links the probabilities of stochastic quantities  in the problem 

of  evaluating the control parameters by inversion from the measurements is most 

commonly expressed by the Bayes’ rule (1763) for conditional probabilities.   

 

)(
)()/()/(

AP
BPBAPABP =                                                                             (1.7) 

 

where A  and B are statistical events. The rule is actually derived from the definition of 

conditional probability  

 

)(
)()/(

BP
BAPBAP ∩

=                                                                                     (1.8) 
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The left hand side is red as “probability of A given B”. From the definition  it follows 

 

)()/()(
)()/()(

APABPBAP
BPBAPBAP

=∩
=∩

.                                                                            (1.9) 

The Baye’s rule is then readily derived 

                                                                                  

Assuming that the event B is from the control parameter space and A  from the 

measurement space,  then the rule (1.7) is red as: 

“Conditional probability of  the parameter taking values defined by the event B 

conditioned on the measurement taking values as defined by the event A  is equal to 

product of  conditional probability of  the measurement taking values defined by the event 

A  conditioned on the parameter  taking values as defined by the event B  and  probability 

of the parameter taking the values as defined by the event B, normalized by probability of 

the  measurement taking values as defined by the event A 

 

             This relationship apparently allows to evaluate probability of the parameter (as 

defined by B ) given the measurements (as defined by A) assuming that right hand side 

(r.h.s.) of (1.7) is known. The probabilities ,  and  are hard to 

evaluate when based on the occurrence of events approach. It is far more convenient  to 

assume probability distributions associated with the space to which the events A and B 

belong (i.e., the measurement and parameter spaces, respectively). As the distribution is 

determined by the probability density (1.6), the problem is then transformed to finding a  

)/( BAP )(AP )(BP

relationship between the probability densities on the joint parameter and measurement 

spaces. To arrive at the relationship which relates the probability densities instead of the 
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probabilities of individual events we take the approach from Tarantola (2005) of  

defining  the probability densities in the joint spaces of the parameters and measurements 

and their conjuction . 

 

           It is possible but not necessary to derive the desired relationship between the 

probability densities as generalization of the Bayes’ rule (1.7). This approach is taken in 

the literature on estimation and stochasting filtering theory which addresses the inference 

of state of modeled time evolving systems from discrete stochastic measurements 

(Jazwinski, 1970; Sorenson, 1985). In the applications in the Geoscience problem 

examples of the use of equivalent to the Bayes’ rule for probabilities is described in Cohn 

(1997), Rodgers (2000), Evensen (2006) and Lewis et. al. (2005).   In the stochastic 

filtering theory literature the generalization of the Bayes’ rule is derived  by a limiting 

process in the joint space of the measurements and modeled state (Jazwinski, 1970). It is 

beyond the scope of this text to present the theoretical derivation and indebt analysis of 

the use of conditional instead of the joint posterior probability density functions. In the 

present chapter the approach from Tarantola (2005) is adapted for easy interpretation of 

the origin of probability density functions on the parameter and measurement spaces 

which apply within wide scope of the Geoscience problems where the parameters and 

models of many  kinds are used to analyze and predict the state in conjunction with vast 

variety of measurements.      
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2.4.2 Conjuction of probability distributions 

 

It is shown in section 2.1 that there are two sources of information about the natural 

system under study. These are the modeled and measured information.  Let parameter 

space be denoted M , spanned by points . This space is transformed into a  

measurement space by a forward model  

,....),( 21 mm

)(my φ=                                                                                                         (1.10) 

In the damped oscillator example φ is represented by equation (1.1). Let the measurement 

space as simulated by the model be denoted Ο . Ο  is spanned by points . The 

joint space 

,....),( 21 yy

Ο×=Ω M , which is characterized by a joint probability density , is 

the space of all possible information available about a natural system under study,  given 

the model. The joint probability density on 

),( ymf

Ω  provides complete description of the 

uncertainties and natural variability in the parameters and the result of these by the model 

simulations which is contained in the space Ο . The joint probability density  

could also include effects of  modeling errors. The modeling errors would result from the 

use of imperfect model. For example, the damped oscillator model (1.1) may be used to 

simulate damped oscillations  which are in reality also driven by some unknown external 

harmonic force. When the force is not included in the equation, the model would be in 

error relative to the actual natural system and consequently relative to the  measurements. 

It is not trivial task to design or assume the effect of modeling errors when specifying the 

joint probability density . This problem is illustrated in the exercises ?? . 

),( ymf

),( ymf
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              The other information about the natural system is contained in the actual 

measurements which are independent of the model. Let this information be in space 

denoted . There is  a joint probability density on the joint space C MC ×=Θ , denoted 

),( dmρ . Notice that ),(),( ymfym ≠ρ .  The union of measurement spaces Ο and 

defines total measurement space which is denoted . The joint probability densities 

 and 

C D

),( ymf ),( ymρ  are both defined on . New information about the system would 

be obtained when the two joint probability densities  are  combined by conjuction  

(Tarantola, 2005, chapter 1.5) 

D

 

),(
),(),(1),(

ym
ymfymymp

ν
ρ

γ
=                                                             (1.11) 

 

Where ∫ ×
=

MD ym
ymfym

),(
),(),(

ν
ργ   is constant and ν is so called homogenous probability 

density.  is a posteriori probability density on the joint space ),( ymp MD × resulting 

from the combined probability distributions.  The knowledge of  a posteriori probability 

density is the most complete available quantitative knowledge of information about the 

natural system under study. By this property, the expression (1.11) defines the general 

inverse modeling problem:  

 

Evaluate  from knowledge of ),( ymp ),( ymρ ,  and ),( ymf ),( ymν .  

 

  contains all available quantitative information of the system in the space ),( ymp

DM ×  from which solution of the inverse modeling problem is to be derived. To arrive 
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at the resolution we need to introduce definitions of marginal and conditional probability 

densities and a priori information.   

             The marginal probability densities for any joint space with the associated joint 

distribution  in the space spanned by points are   ),( bag ,.....),,.....,,( 2121 bbaa

∫
∫

=

=

AB

BA

dabagbg

dbbagag

),()(

),()(
                                                                             (1.12) 

When the space  is independent of  then  ,.....),( 21 aa ,.....),( 21 bb

)()(),( bgagbag BA=                                                                              (1.13) 

The conditional probability density is defined   

)(
),()/(/ bg

bagbag
B

BA =                                                                                     (1.14) 

         The conditional probability density is interpreted as the probability density of points 

in the joint space for which . Using (1.14) the joint probability density for the 

information given the model is  

)(abb =

 

)()/(),( mmyfymf ν=                                                                               (1.15) 

 

where the marginal probability density in the parameter space is assumed to be equal to 

the homogenous probability density of the parameters.  The conditional probability 

density   is made of the results of forward model applied over a space of control 

parameters without knowledge of the measurements. In figure 1.2 the discrete 

examples of this probability density are shown for the damped oscillator model. 

)/( myf
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         The probability density ),( ymρ  results from the information in the joint space of 

the control parameters and measurements without knowledge of the model. It is natural to 

assume that these are independent. From (1.13)  

 

)()(),( ymym DM ρρρ =                                                                         (1.16) 

 

The probability density )( yDρ  results exclusively from information about the 

uncertainties in the measurements. The  probability density )(mMρ  in turn results from 

information of the uncertainties or variability in the control parameters which is 

independent of the measurements. This information is called a priori.  

 

Under the same assumption as in (1.16)  the homogenous probability density in (1.11) is 

 

)()(),( ymym DM ννν =                                                                           (1.17) 

 

Substituting (1.15-1.17)  into (1.11) renders 

 

)(
)/()()(1),(

y
myfmyymp

D

MD

ν
ρρ

γ
=                                                         (1.18) 

 

The solution of the general problem (1.18) is to compute the marginal probability density 

for the control parameter space. Using  (1.18)  in  (1.12) 
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dy
y

myfmymp
D

D

MD
M ∫= )(

)/()()(1)(
ν
ρρ

γ
                                                     (1.19) 

 

(Tarantola, 2005). is interpreted as projection onto )(mpM Μ . The probability densities 

on the r.h.s. of (1.19) are assumed known for the specific application. Geosciences and 

other physical sciences where parameters and models of many kinds are used to analyze 

and predict the state in conjunction with vast variety of measurements.      

 

         In the present definition of the joint space DM ×  with the associated joint 

probability density , the conditional probability density in for the parameter 

space could be derived from application of  (1.14) assuming existence of  . 

This assumption is somewhat difficult to interpret in the general case in which the 

parameter space is not the same as the modeled system state as in the stochastic filtering 

theory. When the assumption is valid it implies 

),( dmp

)( ymm =

 

)()/(),( ypympymp D=                                                           (1.20) 

 

Combining (1.18) and (1.20)  

)()(
)/()()(1)/(

ypy
myfymymp

DD

DM

ν
ρρ

γ
=                                                      (1.21) 

 

            This expression implies that the conditional probability density of parameters 

conditioned on the measurements is obtainable from the independent information about 

quantities in the space of measurements and parameters. The posterior probability 
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densities in (1.19) and (1.21) are apparently different, but in either case the required 

knowledge about the independent stochastic information in the parameter and 

measurements spaces is the same.  Before addressing common choices in general and 

more specifically in the examples in chapters 4 and 5 it is instructive to consider what 

type of information may be most useful or interesting to derive from the knowledge of 

posterior probability density function.  

 

2.4.3 Estimation criteria 

 

            In the practice with the Geoscience problems the parameter space is often large 

multidimensional space. In this situation it is unfeasible to either evaluate or visualize 

(1.19) or (1.22).  Instead, characteristics of the posterior probability density function are 

used to define single best estimate or central estimate of the parameters (Cohn, 1997, 

Jazwinski 1970; Tarantola, 2005). The commonly used central estimation criteria  are   

a) Maximum likelihood,  define by a discrete region or continuous point 

with maximum probability associated with the posterior probability 

density function. The likelihood function is  

∫= D
D

D dy
y

myfymL
)(

)/()()(
ν

ρ                                               

b) Minimum variance, defined  by the men of the posterior probability 

distribution 

∫= M M dmmmpm )(  or conditional mean ∫= M
dmymmpm )/(  
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c) Minimum absolute distance, defined by the median of the posterior 

density distribution 

The choice of criterion would depend on the purpose of estimation and characteristics of 

the specific problem.  

 

 

2.4.4 Conjuction of Gaussian distributions 

 

           It is common to assume that probability density functions associated with model 

and measurement spaces are Gaussian or Normal. The Gaussian distribution is 

characterized with only two statistical parameters: mean x and covariance C  

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − )()(

2
1exp

det)2(

1)( 1

2
1 xxCxx

C
xp T

π
                    (1.23) 

 

In the model space (1.23) is 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))(())((

2
1exp

det)2(

1)/( 1

2
1 myCmy

C
myf s

T

s

φφ
π

                          (1.24) 

while in the measurement space 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))()(

2
1exp

det)2(

1)( 1

2
1 measd

T
meas

d

D yyCyy
C

y
π

ρ                             (1.25) 

 

Using (1.24) and (1.25) in (1.19)  
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⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))(())((

2
1exp)()( 1

measD
T

measMM ymCymmkmp φφρ                           (1.26) 

Where  denotes actual measurements, is cumulative constant and  measd k

SdD CCC +=                                                                                                    (1.27) 

(1.26) indicates that the convolving of the two Gaussian probability distributions in the 

measurement space  is also Gaussian  with the summed up uncertainties from the 

independent modeled and measured information, represented by the covariance  

Problem 1: Derive 1.27 (Appendix) 

DC

When it is further assumed that the a priori probability density function in the parameter 

space is Gaussian 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))()(

2
1exp

det)2(

1)( 1

2
1 priorm

T
prior

m

M mmCmm
C

m
π

ρ                       (1.28) 

then  

( )

( ) ( ) ( ) ( )[ ]priorm
T

priormeasD
T

meas

M

mmCmmymCymmS

mSconstmp

−−+−−=

−=

−− 11 )()(
2
1)(

)(exp)(

φφ

          (1.29) 

 

)(mS  is apparently the weighted sum of squares. When the model is linear Fmm ≡)(φ ,  

then in (1.29) becomes Gaussian with the mean and covariance, respectively  )(mpM

( )
111

1

)(

)(
−−−

−

+=

−++=

MD
T

S

priormeasD
T

M
T

Mprior

CFCFC

FmdCFFCFCmm
                                     (1.30) 

 

Problem 2: Derive 1.30 (Appendix) 
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                  In the section on Kalman Filter technique (3.2) it is shown that solution (1.30) 

is also derived for the data assimilation problem by the stochasting filtering theory which 

addresses the inference of state of modeled time evolving systems from discrete 

stochastic measurements (Jazwinski, 1970). This theory is applicable in the Atmospheric 

sciences and Oceanography when the interest is to produce quantification of the 

atmospheric or oceanic state in geographical discretized space and over time (Cohn, 

1997; Kalnay 2000).   

 

           Application of the maximum likelihood criterion for the central estimate by (1.29) 

implies minimization of . The minimization of  is commonly referred to as 

“least square problem” which is treated in the chapter on variational techniques (3.3). 

)(mS )(mS
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3. Inverse modeling and data assimilation techniques 

 

3.1.  Monte Carlo 

(Missing brief intro: bit of history, mention of  kind of problems which 

are solved with this class of  techniques) 

           It is easy to understand that when a space of stochastic quantity is sampled 

randomly many times it is possible to derive a distribution on that space from the 

sample.  This is the desired result in the inverse problem, if obtainable. The random 

sampling is called Monte Carlo sampling (Mannon, 1999). The difficulty is that for 

multidimensional spaces such as the space of parameters which is transformed into the 

simulated measurements  in the inverse problems in the Geosciences, there are large 

regions of insignificant resultant probability, implying need to have very large samples.  

To reduce the number of samples, it is desirable to tend to sample regions which result in 
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significant probability. Several sampling techniques which posses this property are 

briefly described in this section.   

 

         Even when made “efficient” the Monte Carlo techniques are practical only for 

problems with relatively small number of parameters  (order of tens or less) and relatively 

fast models.   In the exercises (chapter 5) the reader could experience performance of an 

efficient Monte Carlo inverse technique, called Markov Chain Monte Carlo (MCMC) by 

Metropolis and Ulam (1949)  with models of varying degree of computational cost and 

complexity. Compared to other  techniques included in this practicum the  MCMC is by 

far the most costly.  

 

3.1.1. Metropolis 

 

                 In the inverse problem the interest is to sample  using (1.19).  This 

implies sampling of the conjuction of 

)(mpM

)(dDρ  and  from random independent 

samples with probability distribution 

)/( mdf

)(mMρ . One of most efficient techniques to do this 

is called Metropolis (Metropolis and Ulam (1949).  First it is assumed that each step in 

sampling is dependent only on the previous step. This is called Markov Chain (reference 

?). Second, the sampling is random at each step which is characteristic of  the Monte 

Carlo sampling but the move from one step to the next is controlled in the following way 

• If   then accept the transition from  to   )()( ij mLmL ≥ im jm

• If   then decide to randomly move to  or to stay at  with the 

following probability of accepting the move 

)()( ij mLmL < jm im
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)(

i

j
ji mL

mL
P =→                                                                               (1.31) 

where ∫= D
D

D dy
y

myfymL
)(

)/()()(
ν

ρ is the likelihood function. Obviously, there has to 

be an initial estimate of   to be able to evaluate the likelihood function for 

the test at . 

)/( myf

),( ji mm )( yDρ  is typically not produced by sampling but is assumed to 

be known density derived from knowledge about the specific measurement 

uncertainties. The initial estimate of  could result from : a) an independent 

random sampling, typically referred to as “burn in period” or b) approximation by a 

known density distribution function such as the Gaussian.  

)/( myf

               In the Gaussian case  the likelihood function from (1.26) applies but the 

associated covariance is not known exactly. When it is further assumed that the 

measurements are independent random quantities the requirement to use an 

approximate covariance results in simpler requirement to specify an initial 

approximate variance for each measured quantity.   The approximated likelihood 

function is then 

 

( ) ( )[ ]meas
T

meas ymymconstmL −Λ−= − )()(exp)(~ 1 φφ                   (1.32) 

 

where is diagonal matrix of the combined measurement and model uncertainties as 

in (1.27). During the random sampling using the criteria of the Metropolis technique 

the approximated likelihood function could be refined by introducing new estimates 

of the variance. 

Λ
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3.1.2. Simulated Annealing 

 

            When the goal is to produce just the maximum likelihood estimate by random 

sampling, the technique analogous  to the physical process of annealing could be used. 

The physical annealing consists of first heating than slow cooling of solids to ambient 

temperature to eliminate stress in the material. In the numerical technique labeled the 

“simulated annealing”  an energy function is defined 

))(ln()( mLTmE −=                                                                    (1.33) 

where T  is equivalent of temperature. The energy is always positive. The posterior 

probability density function  

T
mE

MM emconstmp
)(

)()(
−

= ρ  

 is at maximum when the energy function is at minimum. The technique consists of 

slow change of “temperature”  toward zero to render the energy minimum. The energy 

function for the probability density distribution in (1.27) which results from the 

conjuction of Gaussian distributions is the misfit function in the measurement space 

multiplied by a constant. 

( )))(())((),( 1
measD

T
meas ymCymkmE −−Τ=Τ − φφ                            (1.34) 

 

             The assumption of independent measurements would render the covariance  

diagonal as in (1.32). The advantage of (1.32) or (1.34) is that the conjuction is  

explicitly and easily evaluated for any m . To test  applicability of (1.32) and (1.34) or 

to estimate the approximate variance it is desirable, if feasible, to “roughly” evaluate 

DC
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)/( myf  or the conjuction )/()( myfyDρ  by a simpler Monte Carlo sampling 

technique. For example, this could be performed by the Gibbs technique (Geman and 

Geman, 1984).   

 

3.2. Kalman Filter  

  

       The Kalman Filter class of techniques have been developed for solving  the 

problems of system control by estimation of time evolving state of the system from 

erroneous measurements. In this class of problems the state of the system at one time 

controls the state at  subsequent time (Kalman, 1960; Jazwinski, 1970). The Kalman 

Filter techniques have been introduced in 1990’s in the Geoscience disciplines to 

address similar problem.  An excellent introduction to the application of Kalman 

Filter techniques in the Atmospheric sciences is given in the article by Cohn (1997).   

              Central to the Kalman Filter class of techniques are the use of posterior 

conditional probability density and assumption that the prior, modeled and actual 

measurement probability densities are Gaussian. To connect to the general inverse 

problem theory as presented in chapter 2 following Tarantola (2005)  recall that the 

posterior conditional probability density resulting from conjuction of information on 

the space DM ×  is expressed by  (1.21), from which it follows   

∫∫
==

D

M

D

dyymp
mpmyp

dyymp
ympymp

),(
)()/(

),(
),()/(                                       (1.35) 

  The relationship (1.35) is then used as the solution of the general inverse problem 

(1.11). It is already discussed in chapter 2 that the use of  either the marginal or 
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conditional posterior probability density does not change the inverse problem. The 

problem is to find the probability density function which combines prior knowledge 

about the stochastic control parameters employed by the model with the stochastic 

measurements.  

             The assumption of Gaussian probability densities is less general. It is 

reasonable to pose the question: When is the use of Gaussian probability density 

valid? The Central Limit Theorem on the properties of cumulative stochastic 

quantities partially helps in answering the question. It states 

 

Central Limit Theorem: Cumulative distribution of any set of independent variables 

with any distribution having a finite mean and variance tends to normal distribution  

  

This theorem is readily interpreted in the measurement space as a large number of  

different measurements of the same physical quantity would tend to produce normally 

distributed  cumulative estimate of that quantity. The problem may occur with 

measured quantities which are positive semi-definite ( ) with large probability 

near or at zero. A transformation of variable  

0≥y

)ln( yq =                                                      (1.37) 

could help solve the problem if the associated probability density function )(qρ  is 

exactly or approximately Gaussian.  The validity of Gaussian probability density 

assumption in the parameter and model spaces is hard to justify for general case and 

must be addressed for the each specific problem. Transformations similar to  (1.37) 

may  be used.  
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             Assuming the validity of Gaussian probability density functions and the use 

of conditional probability density as the solution of inverse problem the theory of 

discrete Kalman Filter for linear class of models is derived in the following way.  Let 

a discrete dynamical or state evolution model be   

t
kk

t
kk

t
k GwFw 1111 −−−− += ε                                                                            (1.38) 

where  is a vector of numerical solution of a set of differential equations in 

discrete time and space. Subscript k  denotes discrete time point, while superscripts  

and  refer to truth and observations, respectively. The symbol is used to denote  

the control parameters instead of m  to distinguish the specific type of the control 

parameter in the state estimation problem. The equation (1.38) expresses 

transformation of the “true” state from  time step 

t
kw

t

o w

)1( −k  to  by the discrete linear 

operator  and the associated error relative to the true transformation . This error is 

assumed to be a linear stochastic forcing . In what follows the exact 

knowledge of deterministic error relative to the truth is not required but the 

knowledge of error statistics is.  

k

1−kF

t
kkG 11 −− ε

           The state evolution model typically does not integrate into the observation 

space. This condition requires that the state is transformed or mapped as in (1.10). In 

the state estimation problem the transformation is written  

o
k

t
kk

o
k wHy ε+=                                                                                         (1.39) 

This transformation uses a discrete linear operator H  from the true state to the  

observations. The linear operator is assumed because the original Kalman Filter was 

derived for the linear transformations. The linear term  in (1.39) indicates that there o
kε
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are errors in the observations or, in terms of the formulation in chapter 2, that the 

observations are stochastic quantities.  This error term could also include the errors 

which are associated with uncertainties in the transformation operator.  

                 Substitution of (1.39) into (1.38) would render one model for simulation of 

transformation from the state at 1−k time to measurements at . The separation of 

the model in two parts is motivated with goal to produce estimates of the state 

sequentially at discrete time points as new measurements become available after the  

prediction is made by the evolution model (1.38) using an estimate of the true state at 

previous times. The evolution between 

k

)1( −k and  from the estimate is written )(k

e
kk

e
kk

f
k GwFw 1111 −−−− += ε                                                                   (1.40) 

The predicted state is then transformed into the measurement space  

f
k

f
kk

o
k wHy ε+=                                                                                (1.41) 

              The inverse problem is to find an estimate of the true state  from 

information about stochastic quantities , ,  and .  The conditional 

probability (1.36) is used for the solution. The prior probability density 

t
kw

f
kw o

ky t
kε

o
kε

)(mMρ is the 

probability density of the predicted state in (1.40). The probability density of 

measurements given the model  is the probability density of  in (1.41). The 

marginal probability density of the measurements is . The posterior 

conditional probability density is then written 

o
ky

)( 0
kD yp

)/(
)/()/()/(

1

1
o
k

o
k

t
k

o
k

o
k

t
ko

k
t
k yyp

wypywpconstywp
−

−=                                                    (1.42) 
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The conditional probability density notation for the prior and measurement terms on 

the right hand side  is used to indicate that the knowledge about them is conditioned 

on the observations which were used prior to making the new prediction.  This 

property implies that the solution (1.42) is recursive.  Assuming that all probability 

densities on the right hand side in (1.42) are Gaussian, the solution requires that the 

associated mean and covarinaces are specified.  

             From (1.40)  the mean and covariance of  are derived, 

respectively  

)/( 1
o
k

t
k ywp −

[ ][ ]
Τ
−−−

Τ
−−−

Τ

−−−−−−−−−−

−−−−−−−−−

+=
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=+=
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o
k

t
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GQGFCF

GwwFGwwFC

wFyGywFyw

εε

ε

   (1.43) 

 Here it is assumed that the mean of the state evolution model  error is identically zero 

(i.e., the error is the “white noise”) and that the mean of the probability density at 

is the central posterior estimate at that time, which is then propagated forward 

in time.  The mean and covariance of  and are derived using 

(1.41) and (1.43) along with assumption that the model error is white and that the 

estimate and model errors are mutually uncorrelated.  

)1( −k

)/( t
k

o
k wyp )/( 1
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k yyp −
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                                             (1.44) 

( )( ) kkkk
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ΤΤ
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         Using (1.43)-(1.45) in the definition of Gaussian probability density function 

and substituting in (1.42) results in the expression for the desired posterior 

conditional probability density  

)
2
1exp()/( Jconstywp o

k
t
k −=                                                               (1.46) 

where 

)()()(

)()()()(
1

11

fo
f

fo

ftftfofo

wyRHHPHwy

wwCwwHwyRHwyJ

−+−−

−−+−−=
−ΤΤ

−Τ−Τ

             (1.47) 

It can be shown (for example in Cohn,  1997) that  

( )[ ] ( )[ ])()()( 1 f
kk

o
kk

f
k

t
k

e
k

f
kk

o
kk

f
k

t
k wHyKwwCwHyKwwJ −+−−+−= −Τ         (1.48) 

( 111 −−−Τ += CHRHC e )

)

                                                                           (1.49) 

( 1−ΤΤ += RHCHCHK                                                                            (1.50) 

Substitution of (1.48)-(1.50) shows that the posterior conditional probability density 

function is Gaussian with mean and covariance, respectively 

( ) ( )
( ) 111

1

−−−Τ

−ΤΤ

+=

−++=

kk
e
k

f
kk

o
kkkkk

f
k

e
k

CHRHC

wHyRHCHHCww
                                         (1.51) 

The matrix K in (1.50) is called Kalman gain matrix because it is applied to the 

difference between actual and simulated measurements to correct the prior in (1.51). 

The mean and covariance in (1.51) could be obtained directly from the conjuction of 

Gaussian probability densities in section 2.4.4 as application of (1.30) to the problem 

in this section where the prior is produced sequentially from prediction using the 

posterior solution at previous time instance.    
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           The most celebrated property of the Kalman Filter is that the entire probability 

density function is predicted to produce the new prior because both moments of the 

Gaussian probability density function are advanced in time by (1.43). The Kalman 

Filter is however difficult to apply exactly even for exactly linear models when the 

number of elements N in the state vector is  large as it requires prediction of the 

covariance matrix of the size .  The filter could be applied exactly to smaller size 

problems (order of 100)  with efficiency that may exceed the performance of a Monte 

Carlo type algorithm. Feasibility of the Kalman Filter theory is extended by 

introduction of the ensemble approach in section 3.4.  

f
kw

2N

 

3.3.  Variational techniques 

 

It is shown in section 2 that posterior probability density function (pdf) is 

expressed 

( )

( ) ( ) ( ) ( )[ ]priorm
T

priormeasD
T

meas

M

mmCmmymCymmS

mSconstmp

−−+−−=

−=

−− 11 )()(
2
1)(

)(exp)(

φφ

       

(1.52) 

under condition that the prior, modeled and actual measurement stochastic quantities 

have the Gaussian pdfs. This condition is used in derivation of the Linear Kalman Filter 

technique in section 4 together with assumption that the models which represent 

evolution of a dynamical system and the mapping or transformation into the measurement 

space are both linear.   These conditions together render solution of the inverse problem 

 35



in the model state space ( ) with Gaussian posterior probability density function.  

The mean of posterior distribution in this case is the minimum of the cost function . 

The Linear Kalman Filter technique is not, however,  widely used in the Geosciences 

because it requires numerical evaluation and inversion of very large matrices and because 

it is derived for strictly linear model. Instead of evaluating the entire posterior Gaussian 

pdf,  the inverse problem could be reduced to solving for a central estimate such as the 

mean or maximum. In section 2.3 it is shown that the mean is central estimate under 

minimum variance criterion for any distribution. In the Gaussian posterior pdf case the  

mean and maximum are the same. This property implies that the mean also satisfies 

maximum likelihood criterion.  

e
kwm =

)(mS

 

If the condition of linear model is eliminated, which eliminates validity of the 

Gaussian  posterior pdf,  but the prior, modeled and actual measurement pdfs remain 

Gaussian the minimum of cost function would still satisfy the maximum likelihood 

criterion. This property suggests the use of cost function minimum to obtain the 

maximum likelihood central estimate for unknown posterior distribution. The inverse 

problem of this kind is more general than the problem addressed in the Linear Kalman 

Filter but less general in solution as it does not attempt to evaluate the entire posterior 

pdf.  

The minimization of a quadratic misfit function such as the cost function in 1.51 

defines an entire class of problems in the estimation theory which is commonly referred 

to as Least Square problem (Crassidis and Junkins, 2004; Lewis et al, 2006; Tarantola, 

2005).  The least square problem was first introduced by Gauss (1809) to determine 
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planetary orbits from an orbit model and telescope measurements of the line of sight 

angles.    In this original work the sum of squares of un-weighted differences between 

model and observations is minimized. This kind of least square problem is commonly 

referred to in modern literature as unconstrained least square problem without weights 

and prior. In the cost function (1.51) the absence of weights is equivalent to assuming 

that  ( ICD = I is identity matrix), while no-prior implies . The unconstrained 

property implies that the minimization is performed directly on the cost function without 

additional functional relationship on the parameter space. The least square problem 

defined by (1.51)  is thus referred to as  constrained, weighted with prior.   The constraint 

is provided by a model such as prediction model (1.38) in the previous section.  

01 =−
MC

 The minimization of cost function could be desirable problem to solve even for 

the linear models if the inversion of large matrices could be avoided. The least square 

problems (linear and nonlinear) could be solved relatively efficiently by  Variational 

technique (Kalnay, 2004, Lewis et al, 2005). The solution is obtained by use of  the 

variational calculus which involves evaluation of directional gradients of the cost 

function (Crassides and Junkins, 2005; Tarantola, 2005; Bryson and Ho, 1975).  There 

are numerous minimization techniques described in the literature on optimal estimation 

and control theory which make use of the cost function directional gradients. In essence 

they use the following well known properties of functions 

Necessary and sufficient condition for a minimum of a function  which is at 

least twice differentiable  are, respectively 

)(xf

0=
∂
∂

x
f  and 02

2

>
∂
∂

x
f  
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where x is vector of independent variables (equivalent of parameter space).  Second order 

truncated Taylor series expansion for  at an arbitrary point  reads )(xf *x

2*
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2
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      (1.53) 

Differentiation with respect to x  and setting minxx = , together with the necessary 

condition yields 

**

)(
1

2

2
*

min
xxxx x

xf
x

fxx
=

−

=
⎥⎦
⎤

⎢⎣
⎡

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=
                                           (1.54) 

This relationship shows that a minimum of function is directly proportional to 

negative of the first directional derivative at an arbitrary point  in the neighborhood of 

the minimum. The use of second order Taylor expansion approximation is made possible 

by assumption that this point is not far from the minimum. For the exactly quadratic 

function, the second order truncation is exact. The cost function in 1.51 is exactly 

quadratic if the model is linear and approximately quadratic in the neighborhood of the 

minimum if the model is nonlinear. Consequently, the relationship (1.54) may be used to 

find the minimum if these conditions are satisfied. It is obvious that unless the function is 

exactly quadratic, the minimum obtained in this way may not be global.  

*x

 

The nature of minimum should be examined for each application specifically if 

possible by inspection of extent of the neighborhood around the computed minimum 

within which . The neighborhood should be spanning the range of 

parameter values with large  cumulative probability. This condition is difficult to inspect 

)()( minxSxS j >
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for large multi dimensional problems. A natural test of improvement brought about by 

results of the inverse problem with the prognostic type model may be to verify the 

prediction against new  measurements, assuming  that the modeling errors are small 

within forecast temporal range. If the prediction is better with than without the solution of 

the inverse problem, the inverse technique has skill, implying that the assumptions used 

in the technique are at least approximately valid. 

 

3.3.1 Variational solution of constrained minimization problem with prior 

 

In chapter 1 it is discussed that many models used in the Geosciences simulate 

time evolution of the natural system state.  Assume that the model of  interest is written 

as system of ODE-s 

( ) ),(, τεαχ
τ
χ GM

d
d

+=                                                                         (1.55) 

The models which do not simulate time evolution could be written in the same symbolic 

form but with 0=
τ
χ

d
d , implying steady state. The model (1.55)  is equivalent to the 

prognostic model (1.38) in section 3.2, but the time derivation is expressed in the 

continuous form. The model and model error operators ),( αχM  and ),( τεG , 

respectively, are assumed in general nonlinear. The system state vector of physical 

quantities )(τχ  is in discretized space. The solution of (1.55) is subject to initial and 

boundary conditions, respectively   

priorχχ ττ =∆−   ,   )()( τχχ b=Ω ,                                                          (1.56) 
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where   denotes boundary of the spatial domain. The solution is also dependent on 

vectors of physical parameters 

Ω

)(τα  and model error )(τε .  In the inverse problem the 

measurements are contained in a vector of measured quantities in discrete spatial points 

at discrete times  ),( ττττ ∆−∈k , as in section 4. The transformation from the system 

state space into measurement space is as in section 4 

o
kkk hy εχτ += )()(                                                                                                      (1.57)                               

Unlike in the linear Kalman Filter, the transformation function h is assumed general 

nonlinear. The cost function (1.51) for the system (1.55-1.57) reads 
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(1.58) 

 

)( kττδ − is Kroneker delta function in time. The prior is represented with four terms 

instead of one   used in section 4, because the prognostic model solution depends on  four 

types of  control parameters. Each of these parameters could be varied to render the cost 

function minimum. The problem of finding the minimum of (1.58) under constraint given 

by (1.55)  can be compactly written 

0)(
)(

=
=
x

xSS
ψ

                                        (1.59)  
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Where x is  vector of all control parameters .  The necessary condition at the 

minimum is 

1×m

0=
∂
∂

x
S . The condition for differential variation in the neighborhood of the 

minimum (Crassidis and Junkins, 2004) is then 

0=
∂
∂

= x
x
SS δδ                               (1.60a) 

0=
∂
∂

= x
x
δψδψ                             (1.60b) 

The minimum solution is then obtained by elimination of differential variations in each 

component of x  from (1.60b) and substitution into (1.60a). This could be very difficult to 

solve as the functional relationship in the constraint could be very complex and even not 

known explicitly. 

Lagrange derived transformation of the constrained minimization problem (1.60) 

into unconstrained by linearly combining equations in (1.59) to define new augmented 

functional  

ψλΤ+= SF                                                                            (1.61)    

λ  is Lagrange multiplier. The necessary conditions at the minimum of  read F
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0)( ==
∂
∂ xF ψδλ
λ

                                                                          (1.63) 

(1.62) is system of equations for unknown λ , while the second condition recovers the 

original constraint. Solving the dual system (1.62-1.63) is an elegant way of automatic 

differential elimination.  
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------------------------------------------------------------------------------------------------------------

------------ 

A simple example from (Crassidis and Junkins, 2004) illustrates this property 

Example #? 

Find minimum of  

32
6 zyS −−=  

under  constraint    036)5(4)4(9),( 22 =−−+−= zyzyψ  

------------------------------------------------------------------------------------------------------------

------------ 

 

The differential elimination by solving the dual system (1.63-1.64) is not applied  

explicitly in practice with large multidimensional problems but the solution of the system 

(1.61) is used. In what follows it is shown that for the large multidimensional control 

parameter space the vector of Largange multipliers is obtained from the solution of 1.61 

and that this solution is directly proportional to the vector of directional gradients of the 

cost function with respect to each control variable. This property allows numerical 

evaluation of the directional gradient vector which could be then used in  the relationship 

(1.54) or similar to compute the minimum. 

To derive (1.61) explicitly for the system (1.55-1.58)  define first the augmented 

functional  
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The Lagrange multiplier is a vector of the same size as χ . The variation of augmented 

functional by the variation of what controls χ  is as follows  
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Substituting (1.67) into (1.66) results in four terms within B2  in (1.66), one for 

each control parameter variation. When combined with A1-A4 in (1.65), it is easy to 

observe that there is common factor among contributions from each control parameter  

[ ] )()(
)(

1
kkD

T

yhChM
d

dI ττδχ
χ

λ
χτ

λ
−−⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= −
Τ

 

 

The variation of augmented functional is now written  
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At the minimum 0=Fδ , leading to a system of ODEs for λ  as in (1.62).  Given 

than λ  is arbitrary,  additional conditions may be set for λ  without loss of generality. 

The condition  for all 0=I τ  results in new system of ODEs for λ , called adjoint 

system.    
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where  to indicate that the adjoint system is solved in reversed time (from end to 

beginning of interval). The adjoint system requires final and boundary conditions. They 

are set 

ττ −=*

          
0
0)(

=
=

Ωλ
τλ end                                                                                        (1.70) 

The convenience of conditions (1.69-1.70) is seen by substitution in (1.68). Given that 

the control variables are independent, the condition at the minimum reads 
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where λ  is solution of (1.69-1.70). It is critical to notice that this solution depends on χ . 

Consequently,  λ  in (1.71) is the solution of (1.69) for minχ  only. This property implies 

that the dual system (1.55) and (1.69) still must be solved simultaneously to make use of 

(1.71)  

The way out of this difficult condition which is virtually impossible to overcome 

in practice with  the large multidimensional models in the Geosciences, is to observe that 

the solution of (1.69) for an arbitrary point χ  is directly proportional to the directional 

gradient of cost function at the same point.  This is easily seen from (1.71) but without 

setting 0=Fδ . For example  
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when prior is neglected, for simplicity, the resulting relationship reads  
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