The Fifth-Generation NCAR / Penn State Mesoscale Model (MM5)

Mark Decker Feiqin Xie ATMO 595E November 23, 2004 Department of Atmospheric Science

Outline

Basic Dynamical Equations
Numerical Methods
Initialization & Boundary Conditions
MM5 Physics
Data Assimilation
Model Verification

X,Y, o Coordinate System

• $p = p_0 + p'(x,y, \sigma,t)$ • $\rho = \rho_0 + \rho'(x,y, \sigma,t)$ • $T = T_0 + T'(x,y, \sigma,t)$ • $\sigma = (p_0 - p_t) / p^*$ where $p^*(x,y) = (p_s - p_t)$ • p^* is a function of only topography

$$\frac{\partial u}{\partial t} + \frac{m}{\rho} \left(\frac{\partial p'}{\partial x} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial x} \frac{\partial p'}{\partial \sigma} \right) = -\mathbf{V} \cdot \nabla u + v \left(f + u \frac{\partial m}{\partial y} - v \frac{\partial m}{\partial x} \right) - ew \cos \alpha - \frac{uw}{r_{earth}} + D_u$$

Sloped σ terms

Subgrid scale eddy terms

$$\frac{\partial v}{\partial t} + \frac{m}{\rho} \left(\frac{\partial p'}{\partial y} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial y} \frac{\partial p'}{\partial \sigma} \right) = -\mathbf{V} \cdot \nabla v - u \left(f + u \frac{\partial m}{\partial y} - v \frac{\partial m}{\partial x} \right) + ew \sin \alpha - \frac{vw}{r_{earth}} + D_v$$

$$\frac{\partial w}{\partial t} + \frac{\rho_0}{\rho} \frac{g}{p^*} \frac{\partial p'}{\partial \sigma} + \frac{g}{\gamma} \frac{p'}{p} = -\mathbf{V} \cdot \nabla w + g \frac{p_0}{p} \frac{T'}{T_0} - \frac{g_{Rd}}{c_p} \frac{p'}{p} + e(u\cos\alpha - v\sin\alpha) + \frac{u^2 + v^2}{r_{earth}} + D_v$$

U:

V:

W:

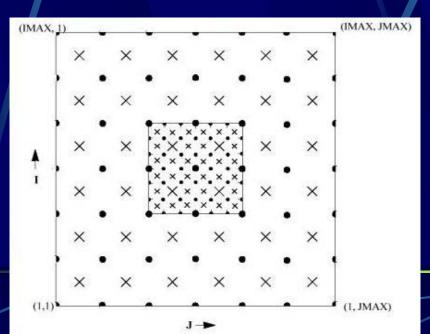
Nonhydrostatic Pressure and Temperature Equations

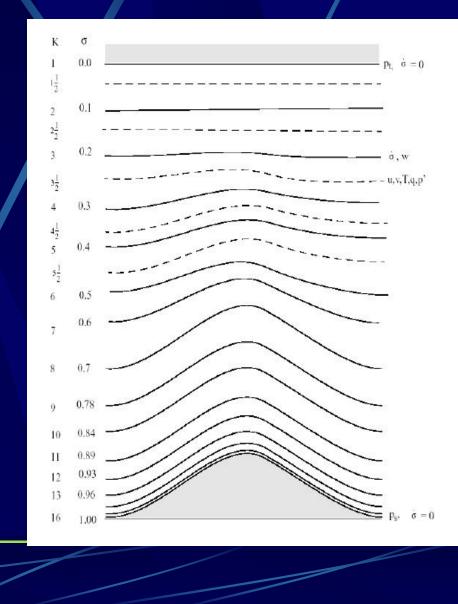
Pressure:

$$\frac{\partial p'}{\partial t} - \rho_0 g w + \gamma p \nabla \cdot \mathbf{V} = -\mathbf{V} \cdot \nabla p'$$

Temperature:

$$\frac{\partial T}{\partial t} = -\mathbf{V} \cdot \nabla T + \frac{1}{\rho c_p} \left(\frac{\partial p'}{\partial t} + \mathbf{V} \cdot \nabla p' - \rho_0 g w \right) + \frac{Q}{c_p} + \frac{T_0}{\theta_0} D_{\theta}$$


Ideal gas Law: $p = \rho R_d T_v$


Diabatic Heating

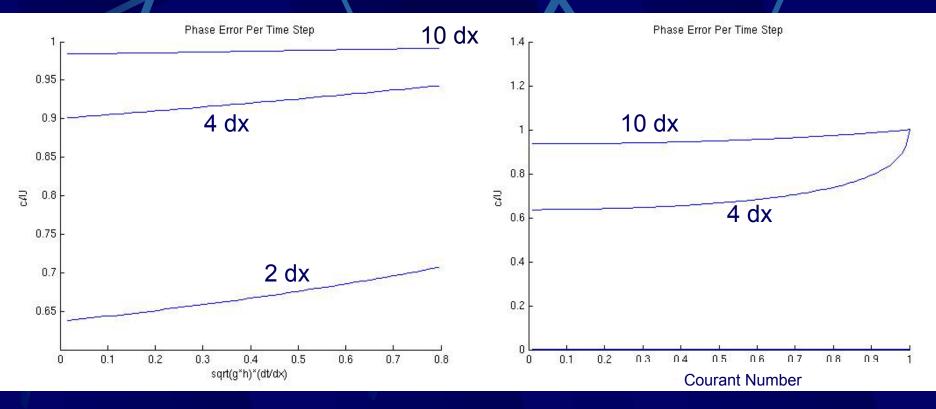
Horizontal Spacing
500 m through 200 km
Arakawa B Grid
U,V (dot) staggered with P,T,q (cross)

Vertical Velocity Staggered

Equation Solution

Spatial Differencing

- Centered In Space
- Precipitation Fall terms Use Forward Upstream
 - Prevent Negative Values


Time Split Method

- Long Time Step Uses Leap Frog
 - Advection, Coriolis, Diffusion
- Short Time Step Uses Forward In Time
 - U,V Advanced First Explicitly
 - W,P` Advanced After
- Asselin Time Filter Applied every large time step
 - $T^{n-1} = T^{n-1} + 0.1^*(T^{n-2} 2T^{n-1} + T^n)$

Error in Finite Difference Scheme

PGF: Forward in Time

Advection: Leap Frog

Nesting

1 and 2 Way Nesting
2 Way Nesting
Requires a 3:1 ratio
3 Methods

- Nest Interpolation
 - Initialized by interpolating coarse-mesh grid
- Nest Analysis Input
 - Initialized with a fine resolution topographic and initial condition file
- Nest Terrain Input
 - Interpolate IC from coarse-mesh grid
 - Terrain input from fine-mesh input file

MM5 Initialization

Objective analysis

Dynamic initialization (Integrated divergence removal)

Data Assimilation (FDDA or 3DVAR)

Lateral Boundary Condition

Time-dependent/Nest
 Relaxation/inflow-outflow

Fixed

Vertical Boundary Conditions

Upper Boundary Condition

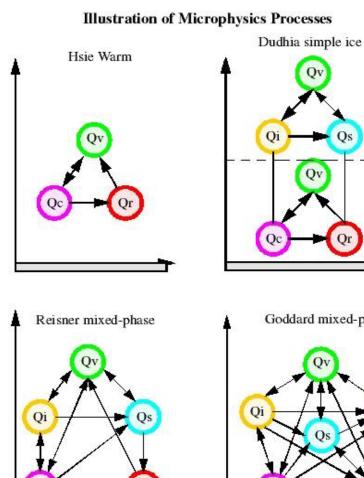
 Rigid lid: w = 0 at top
 Radiative: w is a function of p' at top

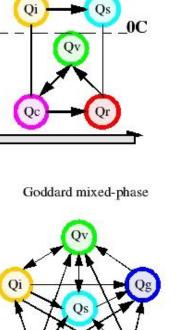
 Lower Boundary Condition

 Dataset (SST, substrate temperature, snow cover, sea-ice) (Fixed or Time-dependent)
 Terrain-following flow conditions

MM5 Physics

Cumulus Parameterizations
 Explicit Moisture/Microphysics
 Planetary Boundary Layer/Vertical Diffusion
 Radiation
 Land Surface Model


Cumulus Parameterizations


None

 Δx 5-10 km Anthes-Kuo ∆x > 30 km Moiusture Convergence Closure Arakawa-Schubert Entrainment into updrafts Downdrafts Grell ∆x 10-30 km Based on quasi equilibrium Single cloud closure scheme **Shallow Cumulus** Based on Grell Non-precipitating clouds

Fritsch-Chappell ∆x 10-30 km Based on relaxation to a profile **Fixed entrainment** Kain-Fritsch Based on removal of buoyant energy over given time Variable entrainment Kain-Fritsch 2 Includes shallow convection **Betts-Miller** Relax to adjust to postconvective thermodynamic profile over given time No explicit downdrafts/updrafts

Illustration of Microphysics Processes

Explicit Moisture/Microphysics

Dry

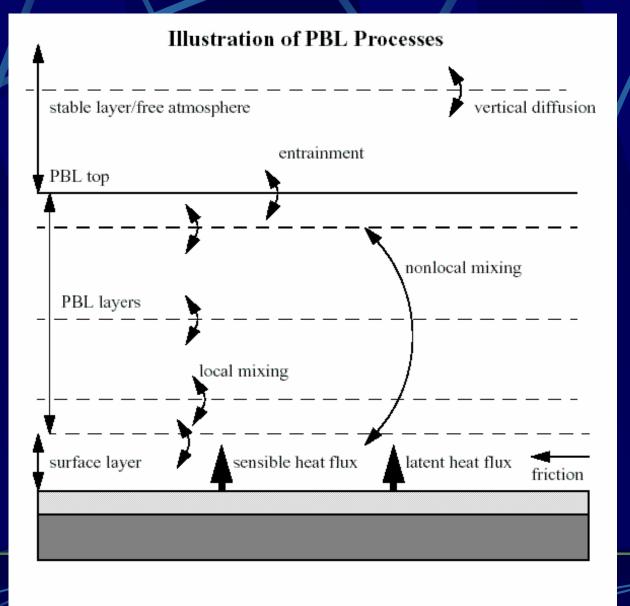
No Moisture

Stable

- Removal of supersaturation
- No explicit clouds
- Warm rain
 - No Ice phases
- Simple Ice
 - Immediately freeze/melt at 0°C
 - Look up table

Reisner 1 Mixed Phase

- Supercooled Liquid
- Gradual Snow Melt
- Look up table


Goddard

- Includes graupel and hail
- Reisner 2
 - Includes graupel
 - Predicts cloud ice number concentration

Schultz

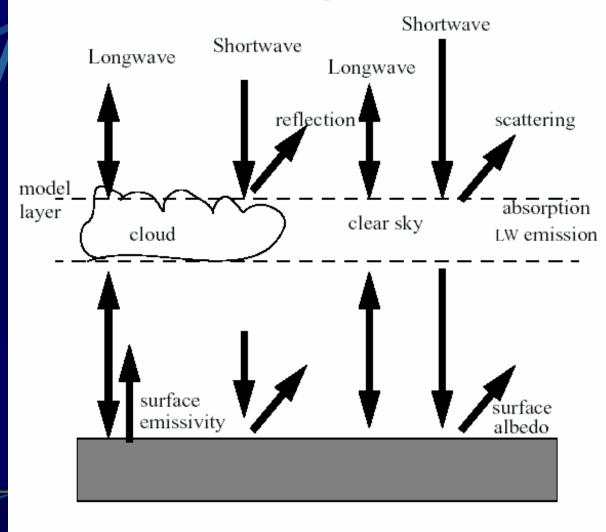
- Simple tuneable equations
- Includes graupel

Illustration of PBL Processes

PBL Process Parameterization

- Represent sub-grid vertical fluxes due to turbulence.
 Mostly distinguished by treatment of the unstable boundary layer.
 Generally provide column tendencies of heat, moisture and momentum and may provide cloud
 - tendencies
- Interacts with fluxes from surface scheme
- Provides frictional effects on momentum

PBL Schemes (Options)


Bulk formula

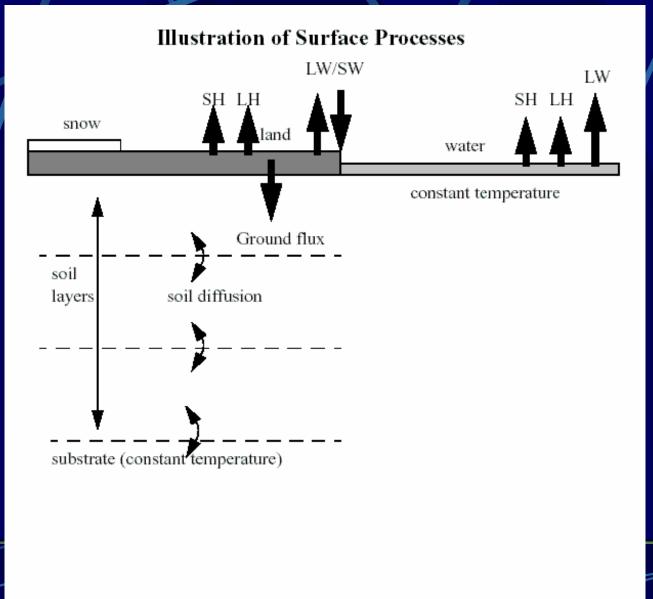
- High-Resolution Blackadar scheme
- MRF scheme <OSU-LSM>
- Burk-Thompson (Mellor-Yamada 1.5-order/level-2.5 scheme)
- Eta TKE scheme <OSU-LSM (v3.5) >
- Gayno-Seaman scheme
- Pleim-Chang scheme <Pleim-Xiu LSM>

(Zhang and Anthes 1982; Hong and Pan 1996; Janjic, 1990, 1994; Gayno 1994)

Illustration of Radiation Processes

Illustration of Free Atmosphere Radiation Processes

Radiation Schemes


- Represent radiative effects in atmosphere and at surface
- Provides surface downwelling longwave and shortwave fluxes for surface scheme
- Provides column temperature tendencies due to vertical radiative flux divergence
- May interact with model clouds or relative humidity

Radiation Schemes (Options)

None (Surface radiation) Simple cooling (Surface radiation) Dudhia's long and short-wave radiation scheme (Cloud Radiation) NCAR/CCM2 radiation scheme RRTM long-wave radiation scheme (V3 only)

(Dudhia 1989; Hack et al. 1993; Mlawer et al., 1997)

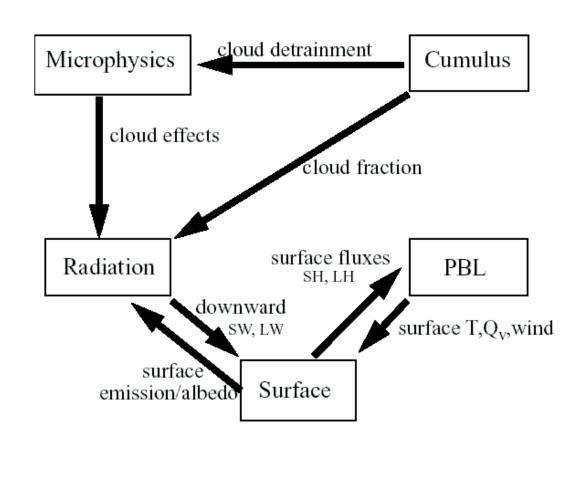
Illustration of Surface Processes

Land Surface Schemes

- Represent effects of land and water surfaces
 May also represent sub-soil temperature and moisture profiles
 - Ground temperature based on heat budget using radiative fluxes and surface-layer atmospheric properties
- Provides sensible and latent heat flux
- May provide snow-cover tendencies and surface moisture availability variation

Land Surface Schemes (Options)

Force-restore (Blackadar)
 Five-layer Soil Temperature
 Oregon State University/Eta LSM (V3.1 - V3.5)
 NOAH Land Surface Model (since V3.6)
 Pleim-Xiu LSM (V3 only)


(Pan and Mahrt 1987; Chen and Dudhia 2001)

Four-Dimensional Data Assimilation (FDDA)

Newtonian relaxation or "nudging" Three primary uses for FDDA: Dynamical initialization Four-dimensional dataset (e.g. for air quality model) Boundary conditions (outer domain nudged towards analysis) Two methods of data assimilation: Grid or analysis nudging Observation or station nudging

Interactions of Parameterizations

Direct Interactions of Parameterizations

Verification

- IC and BC from NCEP model analysis and forcast grid
- $\Delta x = 27$ km, with 27 σ levels



FIG. 8. Precipitation mse analysis for 24-h period ending at the 36-h forecast during the months of Oct, Nov, and Dec, 1997. Models verified are the MRF, Meso Eta, and MM5.

(White et al 1998)

Verification

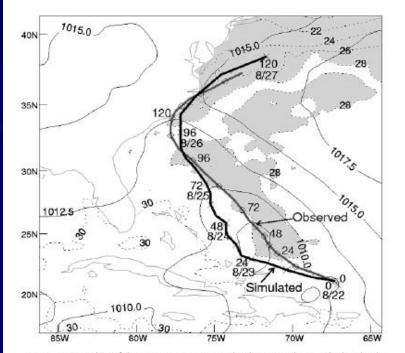


FIG. 2. Tracks (6 h) of Bonnie from the best analyses (light thick lines) and the model simulation (dark thick lines), superposed with the 5-day (0000 UTC 22–0000 UTC 27 Aug) averaged sea level pressure (solid lines) and SST (dotted, with its value of less than 28° C shaded).

(Zhu et al. 2004)

Initialized from satellite measurements
 SST updated daily

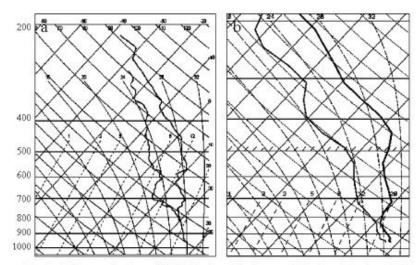


FIG. 4. (a) Dropsonde released by DC-8 aircraft in the eye of Hurricane Bonnie at 2126 UTC 23 Aug (see Fig. 7a for its location) and (b) a simulated sounding at the eye center at 2130 UTC 23 Aug 1998 (see Fig. 7b later for its location).

MM5 model users website: http://www.mmm.ucar.edu/mm5/

White, B.G., J. Paegle, W.J. Steenburgh, J.D. Horel, R.T. Swanson, L.K. Cook, D.J. Onton, J.G. Miles, 1998: Short Term Forecast Validation of Six Models. Weather and Forecasting, 14, 84-108.

Zhu, T., D. Zhang, F. Weng, 2004: Numerical Simulation of Hurricane Bonnie (1998). Part 1: Eyewall Evolution and Intensity Changes. Monthly Weather Review, 132, 225-242.