

Weather Research and Forecasting Model

Melissa Goering Glen Sampson ATMO 595E November 18, 2004

Outline

- What does WRF model do?
- WRF Standard Initialization
- WRF Dynamics
 - Conservation Equations
 - Grid staggering
 - Time integration
 - Boundary conditions

WRF Physics Options

- Turbulence/Diffusion
- Radiation
- Surface
- PBL
- Cumulus parameterization
- Microphysics

Testing, Verification, and Computational Efficiency

What does WRF model do?

• Developed by:

NCAR/MMM and NOAA/FSL with partnership at NCEP, AFWA, FAA, NRL and collaborations with other universities.

- Latest version: WRF version 2.0
- Developed for:
 - Idealized simulations (convection, baroclinic waves, large eddy simulations)
 - Parameterization research
 - Data assimilation research
 - Forecast research
 - Real-time NWP
 - Coupled-model applications

WRF Modeling System Flow Chart (for WRFV2)

WRF Standard Initialization

- Provides all required initial and time-varying boundary conditions
- De-grib GRIB files for meteorological data
- Provides method to define and localize WRF domain, nests, and subnests
- Produces terrain, landuse, etc on domain:
 - USGS 30 sec (~1km) topography
 - USGS 24 category landuse
 - WMO/FAO 16 category 2-layer soil types
 - Annual mean deep soil temperatures
 - Monthly greenness fraction
 - Albedo
 - Terrain slope index
 - Max Snow Albedo

WRF Standard	Domain Horizon	tal Grid Vertical Grid	Localization Parms	Localize Domain		
omain Selection	50		19304	merate Sigma (WRF Eta) Leve	els	
¥ Initial Data ↓	-			hoose what you want to do: umber of Levels:	Load Dom	ain values -
terpolate Data	100		16098 Si ç	jma (WRF Eta) Levels 1.000, 0.993, 0.980, 0.966, 0.869, 0.844, 0.816, 0.786.	0.950, 0.933, 0.9 0.753, 0.718, 0.6	13, 0.892, 80, 0.639.
	200 300		10857	0.596, 0.550, 0.501, 0.451, 0.188, 0.145, 0.108, 0.075,	0.398, 0.345, 0.2 0.046, 0.021, 0.0	90, 0.236, 00,
	400 500		6608	rtical Parameters		ew Levels
	600 700 800 900		3901 P 2199 R 1107 R	ressure at top of model (mb): epresentative surface pressu epresentative surface temper	re (mb): ature (K):	50 1013 288
	1000 L → Log (p)	Height	AGL (m)	isplay sigma levels in:		r Log Pressure
			<pre></pre>	Next>		

Help

ionis:	main Horizontal Grid	Vertical Grid	Localization Parms	ocalize Domain
0.01				
	Horizontal Grid Spec —		🗆 Static Geographical Dat	ta Files ————
ion	NUM DOMAINS	1	GEOG DATAROOT	/u1/home/mgoering/WRF/wrfsi/extdata/GE
_	XDIM	100		,
	YDIM	94	TOPO_30S	mgoering/WRF/wrfsi/extdata/GEOG/topo_30:
PAR	PARENT_ID	1	LANDUSE_30S	ering/WRF/wrfsi/extdata/GEOG/landuse_30s
a	RATIO_TO_PARENT	1	SOILTYPE_TOP_30S	ing/WRF/wrfsi/extdata/GEOG/soiltype_top_3
	DOMAIN_ORIGIN_LLI	1	SOILTYPE_BOT_30S	ing/WRF/wrfsi/extdata/GEOG/soiltype_bot_3
	DOMAIN_ORIGIN_LLJ	1	GREENFRAC	mgoering/WRF/wrfsi/extdata/GEOG/greenfra
	DOMAIN_ORIGIN_URI	144	SOILTEMP_1DEG	ring/WRF/wrfsi/extdata/GEOG/soiltemp_1deg
	DOMAIN_ORIGIN_URJ	144	ALBEDO_NCEP	ering/WRF/wrfsi/extdata/GEOG/albedo_ncep
	MAP_PROJ_NAME	'polar'	MAXSNOWALB	oering/WRF/wrfsi/extdata/GEOG/maxsnowall
	MOAD_KNOWN_LAT	35.64	ISLOPE	me/mgoering/WRF/wrfsi/extdata/GEOG/islop
	MOAD_KNOWN_LON	-112,05		
	MOAD_STAND_LATS	35.64		Update Path
	MOAD_STAND_LONS	-112.05		
	MOAD_DELTA_X	18450		
	MOAD_DELTA_Y	18450		
	SILAVWT_PARM_WRF	0.		
	TOPTWVL_PARM_WRF	2.		

WRF Standard	Sources Script	t				
itialization Tools:	Configure namelist -	grib_prep.nl /u1 /h	ome/mgoering/WRF/wrfsi/extdata/static/(grib_prep.nl		
omain Selection	GRIB source name	GRIB Vtable used to extract variables	Path to GRIB source	Cy be	cle - hours tween runs	Delay - hours after inital valid time
	'ETA'	'ETA'	'/programs/data/mm5 data'		6	3
iterpolate Data	'AVN'	'AVN'	//u1/home/mgoering/WRF/test_data	— j-	6	4
				٥dd		Delease
	<u>1</u> .					

WRF Dynamics

- Terrain Representation
- Vertical Coordinate
- Grid Staggering
- Time integration scheme
- Conservation Equations
- Advection Scheme
- Boundary conditions

Terrain Representation

 Lower boundary condition for geopotential specifies the terrain elevation

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} + \omega \frac{\partial \phi}{\partial \eta} = gw$$

Vertical Coordinate

Hydrostatic pressure

$$\pi \qquad \eta = \frac{(\pi - \pi_t)}{\mu}, \qquad \mu = \pi_s - \pi_t$$

Vertical resolution set by user in WRFSI (default: 31 levels)
Can choose option for vertical interpolation (log, linear, square root)

Grid Staggering

C grid spacing

Time-split Leap Frog and Runge-Kutta scheme

- 3rd order RK generally stable using timestep twice as large in leapfrog model
- Courant number limited to $C_r = U\Delta t / \Delta x < 1.73$

Wicker and Skamarock, 2002 MWR

- RK3 method excellent scheme for integrating the compressible equations and is ideal candidate for NWP
- RK3 best combination of accuracy and simplicity

TABLE 1. Maximum stable Courant number for one-dimensional linear advection. Here, U indicates the scheme is unstable.

	Spatial order			
Time scheme	3rd	4th	5th	6th
Leapfrog RK2 RK3	U 0.88 1.61	0.72 U 1.26	U 0.30 1.42	0.62 U 1.08

Phase and Amplitude errors for LF and RK3

Advection equation analysis

 $\phi_t = U\phi_x$

5th and 6th order upwind-biased and centered schemes. Analysis for 4∆x wave.

Phase and Amplitude errors for LF and RK3

Oscillation equation analysis

 $\phi_t = ik\phi$

Conservation Equations Mass Coordinate (Flux)

$$\frac{\partial U}{\partial t} + \mu \alpha \frac{\partial p}{\partial x} + \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x} = -\frac{\partial U u}{\partial x} - \frac{\partial \Omega u}{\partial \eta}$$
$$\frac{\partial W}{\partial t} + g \left(\mu - \frac{\partial p}{\partial \eta} \right) = -\frac{\partial U w}{\partial x} - \frac{\partial \Omega w}{\partial \eta}$$
$$\frac{\partial \Theta}{\partial t} + \frac{\partial U \theta}{\partial x} + \frac{\partial \Omega \theta}{\partial \eta} = \mu Q$$
$$\frac{\partial \mu}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0$$
geopotential ($\phi = gz$) $\frac{d\phi}{dt} = gw$
Hydrostatic pressure Ideal Gas Law
 $\frac{\phi}{p} = -\mu \alpha, \qquad p = \left(\frac{R\theta}{p,\alpha}\right)^r, \quad \Omega = \mu \eta$

 $p_0 \alpha$

 $\partial \phi$

дŋ

Momentum

Heat Continuity

Diagnostic Relations

Conservation Equation Height Coordinates (Flux)

$$\begin{split} U &= \rho u, \quad V = \rho v, \quad W = \rho w, \quad \Theta = \rho \theta \\ \frac{\partial U}{\partial t} + \gamma R \pi \frac{\partial \Theta}{\partial x} - f V &= -\frac{\partial U u}{\partial x} - \frac{\partial W u}{\partial z} \\ \frac{\partial W}{\partial t} + \gamma R \pi \frac{\partial \Theta}{\partial z} + g \rho &= -\frac{\partial U w}{\partial x} - \frac{\partial W w}{\partial z} \\ \frac{\partial \Theta}{\partial t} + \frac{\partial U \theta}{\partial x} + \frac{\partial W \theta}{\partial z} = \rho Q \\ \frac{\partial \rho}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial W}{\partial z} = 0 \\ \gamma R \pi \nabla \Theta &= c_p \Theta \nabla \pi = \nabla p \end{split}$$

Conservative Variables

Momentum

Heat

Continuity

Pressure terms related to Θ

Moist Equations

$$\begin{aligned} \frac{\partial U}{\partial t} + \alpha \mu_{d} \frac{\partial p}{\partial x} + \frac{\alpha}{\alpha_{d}} \frac{\partial p}{\partial \eta} \frac{\partial \phi}{\partial x} &= -\frac{\partial U u}{\partial x} - \frac{\partial \Omega u}{\partial \eta} \\ \frac{\partial W}{\partial t} + g \left(\mu_{d} - \frac{\alpha}{\alpha_{d}} \frac{\partial p}{\partial \eta} \right) = -\frac{\partial U w}{\partial x} - \frac{\partial \Omega w}{\partial \eta} \\ \frac{\partial \mu_{d}}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial \Omega}{\partial \eta} = 0 \\ \frac{\partial (\mu_{d} q_{v,l})}{\partial t} + \frac{\partial U q_{v,l}}{\partial x} + \frac{\partial \Omega q_{v,l}}{\partial \eta} = \mu_{d} Q_{v,l} \end{aligned}$$

$$\begin{aligned} \mathbf{Hydrostatic Pressure} \quad \mathbf{Ideal Gas Law} \\ \frac{\partial \phi}{\partial \eta} = -\alpha_{d} \mu_{d}, \quad p = \left(\frac{R\Theta}{p_{o} \mu_{d} \alpha_{v}}\right)^{r} \end{aligned}$$

Momentum

Continuity

Heat

Diagnostic Relations

Advection

• 2nd, 3rd, 4th, Example: 5th order scheme 5th,and 6th order centered and upwind biased schemes

$$\frac{\partial (U\phi)}{\partial x} = \frac{1}{\Delta x} \left(F_{i+\frac{1}{2}}(U\phi) - F_{i-\frac{1}{2}}(U\phi) \right)$$

where

$$\begin{split} F_{i-\frac{1}{2}}(U\phi) &= U_{i-\frac{1}{2}} \left\{ \frac{37}{60} (\phi_i + \phi_{i-1}) - \frac{2}{15} (\phi_{i+1} + \phi_{i-2}) + \frac{1}{60} (\phi_{i+2} + \phi_{i-3}) \right\} \\ &- sign(1,U) \frac{1}{60} \left\{ (\phi_{i+2} - \phi_{i-3}) - 5 (\phi_{i+1} - \phi_{i-2}) + 10 (\phi_i - \phi_{i-1}) \right\} \end{split}$$

$$\Delta t \frac{\delta (U\phi)}{\Delta x} \Big|_{5th} = \Delta t \frac{\delta (U\phi)}{\Delta x} \Big|_{6th} \qquad \text{For constant U}$$
$$- \frac{\left| \frac{U\Delta t}{\Delta x} \right|_{6th}}{\left| \frac{1}{60} \left(-\phi_{i-3} + 6\phi_{i-2} - 15\phi_{i-1} + 20\phi_i - 15\phi_{i+1} + 6\phi_{i+2} - \phi_{i+3} \right)}{\frac{Cr}{60} \frac{\partial^6 \phi}{\partial x^6} + H.OT}$$

Boundary Conditions

Тор

- 1. Constant pressure
- 2. Absorbing upper layer (increased horizontal diffusion) Bottom
 - 1. Free Slip
- 2. Variety BL implementations on surface drag and fluxes Lateral

1. Specified

- Open (perturbations can pass into/out of model domain)
 Symmetric
 - Periodic (values of dependent variables are assumed identically equal to values of another boundary)
- 5. Nested

WRF Physics

- Subgrid Eddy diffusionPBL
- Cumulus parameterization
- Radiation
- Microphysics
- Surface

Parameterizations Interactions

Parameterizations Interactions

 It appears that the physic options are done within each RK loop EXCEPT the microphysics

Microphysics:
Heat/moisture tendencies
Microphysics rates
Surface rainfall

Begin time step

End time step

Physics	Options	Comments
Subgrid eddy diffusion	 Constant diffusion Level 2.5 TKE Stress/deformation Smagorinsky 2D Horizontal Smagorinsky 	 Const khdif and kvdif Based on K Based on horiz wind for horiz diffusion only
Boundary Layer* * Includes surface similarity theory	 YSU MRF Mellor-Yamada-Janjic (Eta) 	 Non-local K mixing in dry convective BL, vertical diffusion depends on Ri 1.5 order, level 2.5, TKE prediction with Local K vertical mixing
Convective parameter.	 new Kain-Fritsch Betts-Miller-Janjic (Eta) Grell Ensemble 	 shallow convect, mass flux up/down draft no explicit up/downdraft multiple closure and parameter, explicit up/downdraft

Physics	Options	Comments	
Longwave Radiation	• RRTM (MM5)	Spectral scheme with K distribution and a look up table	
	• Eta (GFDL)	 Spectral scheme from global model used in Eta 	
Shortwave	• Dudhia (MM5)	 Simple downward calculation, clear scattering 	
Radiation	Goddard	•Spectral method	
	• Eta (GFDL)	 Used in Eta, ozone effects and interacts with clouds 	
Land-	 5 layer thermal diffusion 	 layers 1,2,4,8,and 16 cm thick 	
Surface	NOAH Land Surface	 soil temp and moisture 4 layers 	
	RUC Land Surface	 soil temp and moisture 6 layers 	
Micro-	• Kessler	 warm rain, no ice, idealized 	
physics	• Lin et al.	 5 class including graupel 	
	• WSM3	• 3 class with ice, ice processes	
	• WSM5	• 5 class with ice, supercooled H_20	
	• Eta (Ferrier)	one prognostic total condensate	
	• WSM6	6 class with graupel	

Testing and Verification

 Simulations run to target specific facets of research or forecasting.

Testing and Verification

Testing and Verification

a = 1 km, dx = 200 m

a = 100 km, dx = 20 km

Column Maximum Reflectivity 00 UTC 16 JUNE 2002

a) National Radar Composite

c) 10KM Resolution, LIN, KAIN-FRITSCH

b) 4 KM Resolution, LIN Microphysics

d) 10KM Resolution, NCEP3, KAIN-FRITSCH

Verification

Weisman et al. – Although the 4 km is typically minimum grid resolution, there was significant improvement in

> representing the system scale structure for larger convective systems

Isolated convective outbreaks were not as well represented
 During International H₂0 project (IHOP)

Verification

Baldwind and Wandishin

- Found that WRF reproduced the observed spectra much better than higher resolution Eta
 10 km WRF model forecast maintains the variance in precip field down to at least 4 times grid spacing (40km)
 - grid spacing (40km) Variance of Eta drops off sooner and at greater than 10 times grid spacing

3 hr accumulated precipitation valid at 18Z from 12Z 4 June 2002 model run.

Computational Efficiency

Michalakes et al.

- WRF is more costly in terms of time-per-time step
- BUT the RK3 allows for considerably longer time step (200sec WRF vs. 81sec MM5)
- Time-to-solution performance for WRF slightly better than MM5
 - Authors feel this will improve with tuning and optimization

36km resolution on a 136 x112 x 33 grid

Summary of WRF

- Fully compressible, non-hydrostatic (with hydrostatic option)
- Eulerian mass/height based terrain following coordinate
- Arakawa C staggering
- Runge-Kutta time integration scheme
- Higher order advections
- Scalar-conserving
- Complete Coriolis and curvature
 Two-way and one-way nesting
 Lateral boundary conditions for ideal or real data
 Full physics options

Questions?

Melissa Goering Glen Sampson ATMO 595E November 18, 2004

References

Michalakes et al.: Development of a Next-Generation Regional Weather Research and Forecast Model

http://www.mmm.ucar.edu/mm5/mpp/ecmwf01.htm

Shamarock et al., 2001: Prototypes for the WRF Model http://www.mmm.ucar.edu/individual/skamarock/meso2001pp_wcs.pdf

Weisman et al. 2002, : Preliminary Results from 4km Explicit Convective Forecasts Using the WRF Model. (Preprint) AMS 19th Conf. on Weather Analysis and Forecasting and 15th Conf. on Numerical Weather Prediction. Aug. 12^{th.}

Wicker L.J. and W. Shamarock, 2002: Time-Splitting Methods for Elastic Models Using Forward Time Schemes. *Mon. Wea. Rev.,* Vol. 130, pg. 2088-2097.

VRF model Users Web site: http://www.wrf-model.org