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ations 

given by are valid only over spatial and temporal intervals that are much smaller than the
mesoscale space and time scales.

The functional form of this generalized vertical coordinate transformation, in
terms of the original Cartesian system, can be written as(6-24)
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=y y =i2

z = h(x -2 -3 )X ,X ,1i3 = U(x. y, Z, f),

The functional form of u has been specified in a number of forms. including(6-27
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In these expressions, PG' (JG' PT' and (JT refer to the pressures and potential
temperatures at the bottom and top of the coordinate representation; ZG and s
specify the terrain height and height of the top; and Pref(O) and Pref(ZG) are the
pressure at sea level and at ZG using a standard reference atmosphere that is
the same across the model (Black 1994). The first two forms of 0' on the left
are referred to as isentropic and isobaric representations, and the remaining six
are terrain-following coordinate systems, usually called sigma representations.
The bottom formulation in the right column for 0' is a normalized isentropic
representation introduced by Brankovic (1981).

The innovative form of 0' at the bottom of the lefthand column is called the
"Eta coordinate system" (Janjic et al. 1988, Janjic 1990; Mesinger and Black
1992; Black 1994; Mesinger 1996, 1997, 1998; Mesinger et al. 1997) and is
the system used by the U.S. National Centers for Environmental Prediction
(NCEP) for one of their regional models. The Eta system has the advantage of
a form of sigma system that is nearly horizontal, while meeting the requirement
that the system not intersect the terrain. Gallus and Klemp (2000) provide a
recent comparison of model simulations of airflow over mountains using the Eta
coordinate and another form of a terrain-following coordinate system. In ocean
models, a coordinate system that uses density as a vertical coordinate is often
used (see, e.g., Bleck and Boudra 1981). Adcroft et al. (1997) and Marshall et al.
(1997) use a partial grid volume coordinate system (called "shaved cells") at
their ocean bottom-ocean interface. Laprise (1992a) suggests using hydrostatic
pressure as the vertical coordinate.
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6 Coordinate Transformations

The Sigrna-z Coordinate System

Terrain-following coordinate systems that are a function of z have been used
extensively in regional' and mesoscale models (e.g., Mahrer and Pielke 1975;
Colton 1976; Blondin 1978; Yamada 1978a) in which the hydrostatic assumption
has been applied and in mesoscale models in which the hydrostatic assumption
has not been made (e.g., Gal-Chen and Somerville 1975a, b; Clark 1977; Pielke
et at. 1992; Shi et ai. 2000).

6.3.1 The Hydrostatic Assumption Derivation

In developing hydrostatic model equations, investigators have generally
applied the chain rule separately in the vertical and horizontal dimensions
(using the hydrostatic relation). Using the terrain-following coordinate system
defined by

Z -ZG
O"=S-,

S -ZG
(6-48)

for example, where s is a constant and zG is a function of x and y, application
of the chain rule to the hydrostatic relation given by Eq. (4-40) yields

(6-49)

Applying the chain rule separately to Eq. (4-41) is appropriate if the hydrostatic
assumption is exactly satisfied. However, the invariance of the physical represen-
tation is lost if the assumption is not exact, as discussed by Dutton (1976:242),
since a correct tensor transformation is required. When the horizontal scales are
m~ch larger than the vertical scales of motion, the hydrostatic relation is very
closely satisfied, and such a separation of the vertical and horizontal equation
may be justified. By making the hydrostatic assumption before the coordinate

transformation, however, significant insight into the effect of the change of coor-
dinates on the form of the physical invariance of the conservation relations in
the transformed system cannot be evaluated. To provide such insight, it is nec-
essary to use the methods of tensor analysis to transform coordinate systems,
and then to invoke a more general form of the hydrostatic assumption. A more
in-depth understanding of the coordinate transformation is then obtained.

To examine the effect of using the hydrostatic assumption in Eqs. (6-40),
(6-41), and (6-42), Eq. (6-48) is defined as the generalized vertical coordinate.
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6 Coordinate Transfomtations

The velocity vector V, can be expressed as (Pielke and Cram 1989)

V = Ui1]i=UiTj=ui+vj+wk,

---:- --:- - [ -:-( u-s )azG -:-( u-s )azG - ( s )]V=UI'+U2l+U3 I --+J -_ a +k -,
s-ZG ax s-ZG Y s-zG

--I [-:- - ( S-U )azG] -z [-:- - ( S-U )azG] .(6-53) V = U l+k --+U J+k --
sail s ail

+U3k( ~).
The velocities Ui and ui are the covariant and contravariant components, respec-
tively, and are given by

-IU = U,

-zU = v,

OZG ( s )-+w-oy S -ZG .

Therefore, the vectors in Eq. (6-53) can be rewritten in tenns of the Cartesian
quantities as

(6-55)

Figure 6-4 shows the vector V presented in the Cartesian. covariant. and con-
travariant forms for a two-dimensional case.
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7.1 Basic Terms
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substituting Eq. (7-7) into Eq. (7-6) yields

~)"
)2 +

'au'
,aZ)

, au' 2-

,az,

+

g ao / [Rf = Ke --Km
00 az , az

-& !. ~
/[ I' r-

Km 00 az ,.

where Ri is called the gradient Richardson number. The sign of Ri is determined
by the sign of the lapse rate of potential temperature. Thus the following
conditions apply:

(*

Ke R"

-I, (7-8)
-Km

.Ri > 0 con-esponds to ao/aZ? 0, which indicates a stably-stratified layer.

.Ri = 0 con-esponds to ao / az = 0, which con-esponds to neutral
stratification.

.Ri < 0 con-esponds to ao / az < 0, which indicates an unstably stratified
layer.

Theory (e.g., Dutton 1976:79) indicates that when Ri is greater than 0.25, the
stable stratification sufficiently suppresses turbulence so that the flow becomes
laminar, even in the presence of mean wind shear. This value of Ri is called the
critical Richardson number.

The unstable-stratified layer itself is broken down into two regimes:

.IRiI ::: I, where the shear production of subgrid-scale kinetic energy is
important (a regime referred to as forced convection).

.IRil > I, where the shear production becomes unimportant relative to the
buoyant product of subgrid-scale kinetic energy (a regime called free con-
vection ).

The characteristic size of turbulent eddies in the atmosphere are larger during
free convection than under forced convection. Brutsaert (1999) provides a recent
review of boundary-layer turbulence during free convection.

As reported in Turner (1969), the intensity of turbulence near the ground
can be estimated straightforwardly using a wind speed of 10 m, incoming solar
radiation, cloud cover, and time of day. The stability classification scheme dis-
cussed by Turner forms the foundation of most air quality assessments on the
mesoscale in the United States today. Unfortunately, although the dispersion
estimates were developed from observations of diffusion over flat, horizontally
homogeneous terrain, Gaussian plume models using these estimates are being
applied for a wide range of mesoscale systems that are neither flat nor homo-
geneous. As reported by the American Meteorological Society in a position
paper (AMS 1978), over flat, horizontally homogeneous terrain, Gaussian plume
models probably give estimates of downwind plume concentrations within a
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10 Methods of Solution 10.1 Finit Difference Scheme~

By a Taylor series expansion,

sin kdx = kdx - ...0.5

\i
rp

Thus, when kllx « 1,2 Eq. (10-4) can be written as 0

kdx
-0.5

cPi+J -cPi-l / ~ ""' J.
2~x OX k~x

Since k = 21T I L, writing L in terms of the grid spacing L = n~x, where n is
the number of grid points in one cycle of the cosine function, k~x « 1 requires
that 21T In « 1 or n » 1. In other words, the cosine wave must have a very
long wavelength for its derivative to be represented accurately by Eq. (10-2).

In contrast, if L = 2~x, then

cP.i+1 ' sin 1T

=

(a)

2~X<l>,-, / -~~ :: -;- = 0,

so that the representation given by Eq. (10-2) fails to resolve a feature that has
a wavelength of two grid increments. Examples of a longwave and a shortwave
are given in Figure 10-2.

Thus the representation of the derivative of a function using values at neigh-
boring grid points provides very poor representations of short waves relative
to the grid mesh Ax, whereas longer waves are reasonably well resolved. The
ability, or lack thereof, of a numerical scheme to resolve features of differ-
ent wavelengths properly is a crucial consideration in the use of a numerical
approximation scheme.

The linear stability of Eq. (10-1) can be evaluated using the techniques for
representing waves in terms of complex variables introduced in Chapter 5.3 As
discussed there, a dependent variable <1>, for example, can be represented as

~

~ 0

I (b)

11Fig. 10-2.1 Centered finite' t

wave and (~) a 2Ax wave.

is not in f inear form, since j

IabIes. Th procedure, therefo

constant Iue U, so that the 1

-,ti' <f>i+1.
cf>(x, t) = cj;(k, w)ei(kx+wt)

(10-5)
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of cf> at ti e T are known;
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where «f;, lc. and U) can be complex. In a numerical model, the spatial and

temporal independent variables can be written as

x = ndz and t = rAt,

so that Eq. (10-5) can also be written as

<f>(x, t) = <f>(nAx, TAt) = cj,(k, w)ei(knllx+"'Tllt)
(lO~6)

As discussed in Chapter 5, to use the formulation given by Eq. (10-5) in a dif-
ferential equation, it is necessary to linearize the equation. As written, Eq. (10-1)
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10 Methods of Solution304

Other investigators have also suggested improved techniques to conserve
mass. These include Galperin and Kastrel (1998), Walcek and Aleksic (1998), I

and Walcek (1999a, b). The latter papers provided their Fortran code, a publi- I
cation procedure that should be encouraged.

10.1.2 Subgrid-Scale Flux

Llt

As shown by Eq. (7-7), the subgrid-scale correlation terms can be represented
as the product of an exchange coefficient and the gradient of the appropriate
dependent variable. This relation can be written as, for example,

~ = ~K~ ~ <jJr+~ J
iJt iJz iJz

= K .c/Jr+l -c/Jr
'-+

c

:;-! (~- Ki-! (~Z)2' (10-25)

where ~z = z(i + 1) -z(i) = z(i) -z(i -1) and cP represents anyone of the
dependent variables. This equation is often referred to as the diffusion equation.
To study the linear stability of this scheme, the exchange coefficient is assumed
to be a constant (Ki+I/2 = Ki-I/2 = K) and Eq. (10-25) is written as

,J -.' I -2cPJ + cPJ-I)' (10-26)

The exact solution to the diffusion equation [the left side of Eq. (10-25) with
K equal to a constant, i.e., a~/at = K a2~/az2] can be determined by assuming

~ = cPoei(kz+..t) = cPoe-"jt ei(krz+..rt) ,

T-j-!..I.T ~t (..I.T<Pi = 'l'i +K~ 'l'i+

where damping in the z direction is not permitted (i.e., kj = 0).
this expression into the linearized diffusion equation and simplifying yields

ill) -ll). = -Kk2r, ,

where the subscript "r" on k has been eliminated to simplify the notation. Equat-
1ing real and imaginary components shows that (JJr = 0, so the exact solution can

be written as

c;; = c/>Oe-Kk2t eik2.

Expressing the dependent variables as a function of frequency and wavenuffi-
,her, Eq. (10-26) can be rewritten as

1/11 = 1 + y(I/I1 -2 + 1/1-1) = 1 + 2y(coskAz -1),
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