The tectonic setting of Bamiyan and seismicity in and near Afghanistan for the past 12 centuries.

Nicholas Ambraseys
Dept. of Civil Engineering, Imperial College, London. SW7 2BU, UK

Roger Bilham
CIRES & Dept. of Geol. Sciences, University of Colorado, Boulder CO 80309-0399

OVERVIEW

The ancient city of Bamiyan is located on the Herat fault, a 1200-km-long, east-west suture through central Afghanistan, that trends northward into the Hindu Kush mountains north of Kabul at its eastern end. The Bamiyan region is located in the transition zone between the intense seismic activity that characterises the Indo-Asian plate boundary in eastern Afghanistan, and the largely inactive central part of Afghanistan. We describe 52 earthquakes that occurred in the period A.D. 734-2002. Data for some centuries are unavailable, and only after the mid 19th century does the earthquake record become more complete. Historically, the western Herat fault has remained largely inactive, however, a significant earthquake occurred near Bamiyan in 1956. The causal fault that slipped in this M=7.4 earthquake is not known although it appears to have occurred in the region bounded by the Herat fault and the Andarabad fault, 80 km to the north of Bamiyan.

INTRODUCTION

We discuss earthquakes in the region surrounding the Bamiyan region of Afghanistan (Figure 1 & 2). For completeness we include earthquakes in an area bounded by 29°-38°N and 58°-73°E, including the whole of Afghanistan, the eastern part of Iran, southernmost Turkmenistan, Uzbekistan and Tajikistan, and north-western Pakistan (Ambraseys and Bilham, 2003).

Written records of historical earthquakes in Afghanistan are sparse. Even in the 19th and early 20th century communications have remained poor due to the skeletal development of roads, phone lines and government infrastructures, resulting in few published notices about earthquake locations and damage. Newspapers were unavailable until the first quarter of the 20th century and contain news mostly from the Kabul area. Travelers accounts and the narratives of early explorers contain macroseismic information often of more utility than available for the last half century.

Despite the antiquity of Bamiyan we find no information in Arabic and Persian sources regarding earthquakes in its vicinity (34.8469°N, 67.8252°E). The reasons for this is attributable to the fact that the site as a population centre ceased to exist almost 800 years ago. The city of Bamiyan was the capital of a great district of the same name, and as its very ancient remains show, was a great Buddhist center long before the days of Islam. In the 10th century it
was the trade-centre of Khorasan and its territory included many large cities, such as Basghurfand, Sakiwand and Lakhrab, the sites of which are now completely lost.

Arab writers of the beginning of the 13th century describe in some detail the great sculptured statues of Buddha. These were high on the mountainside, in a chamber supported on columns, and on its walls had been sculptured every species of bird. Outside the chamber entrance were two enormous statues in rock of the hill-side, from base to summit, known as the Surkh (red) Bud and the Khing (grey) Bud.

The abandonment of Bamiyan and all its provinces was due to the wrath of Ghengiz Khan, whose grandson was killed at the siege of Bamiyan. The Mongol troops were ordered to level to the ground the town walls and all houses, and Ghengiz forbade any to build or live here ever again, the name of Bamiyan being changed to Marv Balik. Since that time, Bamiyan has been an uninhabited waste (for early illustrations of the great sculptures see Talbot and Maitland, 1886). Thus news from Bamiyan terminates abruptly in the early part of the 13th century, and with it reliable information regarding earthquakes in this part of Afghanistan.

Figure 1 Bamiyan lies at the centre of the mountains of central Afghanistan on an ancient trade route linking east to west through the valley of the great Herat fault. North/south and east/west topographic sections through Bamiyan show its location relative to surrounding mountains. The east-west approaches to Bamiyan along the Herat fault are impeded by 3-km-high passes that isolate the 2500-km-high Bamiyan Valley. The Shekari river drains the valley to the NE towards Baghlan.

Figure 2a (left) A map of Afghanistan showing prominent faults, and major earthquakes described in the article. In 1956 a significant earthquake occurred near Bamiyan in the block bounded by the Andarabad fault and the Herat fault.

Figure 2b (right) Principal stress directions from earthquakes reveal largely oblique compression on the eastern and western edges of Afghanistan, a 1200 km southward promontory of the Asian plate (stippled). Data from World Stress Map.

Fig. 3 Evolution of Afghan trade routes in the past 1300 years showing the dates of historic earthquakes discussed in the text. Pre-1800 major routes indicated by thick lines, minor routes by thin lines.

TECTONIC SETTING

Afghanistan lies on a promontory of the Eurasian plate, which converges with the Arabian Plate to the south and the Indian plate to the south-east at rates of approximately 40
mm/yr, and with the Lut block to the west at approximately 15 mm/year (Figure 2). Minor shortening may be occurring across the mountains of NE Afghanistan causing a slow anticlockwise rotation of the Sistan block, an old continental fragment that collided with Asia prior to the continent-continent collision of India with southern Tibet. Afghanistan has been assembled over the past 100 million years by the accretion of small continental masses from the south, the Herat fault representing a suture between two of these former continental terrains.

A GPS measurement on the eastern edge of the Sistan Block SE of Farah, indicates that SE Afghanistan behaves as part of the EuroAsian plate (Tatar et al., 2002). Seismicity in the region is not distributed uniformly. Within the wide deforming belt are several large areas, such as western and central Afghanistan, that appear to have relatively little seismicity during the 20th century and to behave as effectively rigid blocks, Figures 2a & 4.

Bamiyan lies on the northern edge of the valley that follows one of the largest and most prominent faults in Afghanistan, the Herat fault. This fault, like others with similar strike in the NW corner of the Indo-Asian collision zone has slipped in a dextral sense, but unlike the Talas Ferghana fault to its north, the Herat fault is relatively aseismic at present. A measure of its structural importance is the continuity and width of the 600-km-long east-west valley whose path it controls. The fault can be traced from west of 61°E in the plains near Herat, to meet the Chaman fault system at 69°E, north of Kabul and 200 km to the east of Bamiyan. The fault then curves to the NE for a further 400 km continuing the approximate curve of the Chaman fault system through the Hindu Kush mountains.

One reason for the apparent absence of present-day seismic inactivity on the western half of the Herat fault may be its approximately east-west orientation, a direction that is unfavourable for accommodating the approximately North-South convergence between the Arabian plate and the Asian plate. We are unaware of published calculations for stress directions in central Afghanistan but, assuming central Afghanistan is reasonably homogeneous, and averaging stress directions to its sides, would also suggest that stresses here are directed in a north-south direction, normal to the Herat fault. However, geological evidence suggests that the sub-parallel Andarabad fault ≈80 km north of Bamiyan is currently active.

Earthquakes with focal depths >100 km are associated with subduction of Arabian Sea floor in the Makran in the south, and with a descending slab beneath the Hindu Kush in the north (Pegler and Das, 1998). Seismicity throughout the remainder of Afghanistan, including the Bamiyan area, is restricted to the upper 30 km of the continental crust (Maggi et al 2000a,b).

Faults in western Afghanistan along the Iran border permit the southward motion of the Sistan block, through a series of faults that slip in a right-lateral sense. Faults in eastern Afghanistan along the Pakistan border slip in left-lateral sense at 19-24 mm/yr (Bernard et al 2000; Lawrence et al 1992). Whereas both borders exhibit a component of convergence, thrust faulting is well developed in Baluchistan (Ambraseys and Bilham, 2003a) and especially in northern Pakistan where the Chaman fault veers NW into the collisional tectonics of the Himalaya and Karakorum. The plate boundary is less well-defined along the Iran border than on the Pakistan border, and in the absence of a through-going fault, right lateral shear is partly accommodated by "bookshelf" rotation of the east-west fault systems there (Jackson et al., 1995; Ambraseys and Bilham, 2003b).
To the north, the seismicity of eastern Iran merges with that of the Kopet Dagh and eastern Alborz, and the mountains north of Afghanistan merge with the Tadjik basin, overridden by the Hindu Kush to the south and the Pamir to the north (Burtman and Molnar 1993). The NE corner of Afghanistan merges with the western end of the Hindu Kush intermediate-depth seismic zone, with many earthquakes in the depth range 70 to 300 km, forming a contorted slab dipping steeply north in the Hindu Kush and steeply south in the Pamir (Pegler and Das 1998). This represents a relict ocean basin consumed by subduction within the last 10-15 Ma.

Plate 00. (NOTE TO EDITOR Any views of the valley are suitable here. These were taken from the web. (BW Photos from the Courtauld collection)) Photographs illustrating the valley through which the Herat Fault passes. Left view NW. Right view to SE from the Great Bhudda. Bamiyan is located at 2500 m elevation on the northern edge of the 600-km-long east-west valley that follows the Herat fault, a suture zone between two ancient continents once separated by ocean. The fault itself is almost twice this length and can be traced from close to the Iran border to deep into the Hindu Kush mountains.

Fig.4 Seismicity of Afghanistan. a) Historical earthquakes 732-1890 from Table 1, b) significant events since 1890 from Table 2. c) Historical and recent significant earthquakes from a. and b. d) the entire catalog (Tables 1 & 2 and 3).

HISTORIC MACROSEISMIC DATA

For the early period our main sources of macroseismic information are Persian documents, while for the later period, British and French consular reports are available that occasionally refer to earthquakes outside the Kabul region. Figure 4 illustrates the location of historic earthquakes in different regions of Afghanistan. Numerous shocks have been reported from the capital, Kabul, but although these events have caused general alarm they are typically associated with little damage [Furon 1925a]. A few documents written by European residents in the capital [Niedermayer 1936; Stenz 1945], and expedition reports [Danby et al., 1972] add minor additional data, and demonstrate the difficulty of retrieving reliable macroseismic information outside Kabul. An important source of data in the 20th century is the little-known work by Heuckroth and Karim (1970), who retrieved reports from the Kabul press for the period 1928 to 1969. Secondary publications and catalogs are available that contain no important new data, viz. Samizay (1998), NEIS Catalogue of Significant Earthquakes, and the U. S. National Earthquake Information Center's Earthquake Database. The GSHAP catalog, in particular, is uncritical and occasionally misleading (http://seismo.ethz.ch/GSHAP/index.html).
An annotated summary of case histories for shallow earthquakes in Afghanistan is listed in the appendix, together with the more important sources from which these data have been derived. Notices of felt earthquakes at single locations, such as in Kabul, and at a few other urban centers are numerous but as they add little information to the overall seismicity of the region they have been excluded.

It is clear from the limited number of events described in the appendix that the historic record for Afghanistan is far from complete compared to contiguous surrounding regions. Historic earthquakes in Pakistan, Tadjikistan, Uzbekistan, Turkmenistan are described in Kondorskaya and Shebalin (1997), earthquakes in eastern Iran are described in Ambraseys and Melville (1982) and Moinfar et al. (1994), and earthquakes in Baluchistan are described by Ambraseys and Bilham (2003). Data discussed in these sources are not repeated in the present article.

RECENT INSTRUMENTAL DATA

An abrupt increase in information about Afghan earthquakes occurs near the start of the 20th century (Figure 6). Instrumental data are available from station bulletins world-wide since the end of the 19th century, particularly from Russian and Indian stations, that are useful for the assessment of magnitude before the advent of the magnitude scale in the mid-1950s. Earthquake locations of diverse quality are given by various agencies and authors: BAAS, ISS, ISC, (See abbreviation list in References) by the Russian network and by Gutenberg and Richter (1965). Some events in the region have been relocated by Nowroozi (1971), Quittmeyer & Jacob (1979) and Engdahl et al (1998).

Fig.5 A plot of Ms vs log(Mo) for recent well-located events reveals a change in scaling at approximately Ms=6.2. We use these relations to derive the moment magnitudes for other earthquakes in the catalog for which we have obtained surface-wave magnitudes.

Early instrumental epicenters in Afghanistan, like elsewhere, are unreliable and are frequently based on a poor distribution of global seismic stations. For this reason it is important to correlate early epicentral determinations with felt reports where these are available. A special difficulty attends this type of epicentral verification, especially in north-western Afghanistan where earthquakes occur in both the crust at shallow depths and at subcrustal depths (>70 km). Shallow earthquakes cause heavy local damage and loss of life, but if they occur in a remote part of the country they may fail to be reported. In contrast, large deep earthquakes that cause little or no damage are felt over a large area, and are therefore reported from multiple urban centers. This may have the effect of skewing the perceived location of instrumentally-determined earthquakes toward populated areas, and almost certainly will bias the historic record. Thus, deep events are unlikely to have escaped notice historically, but shallow earthquakes will be recorded only when they occurred near trade routes and literate population centers.

The case of the recent pair of earthquakes of 3 and 25 March 2002 in the Hindu Kush is illustrative of the problem. The first of these damaging events occurred at a depth of 250 km with a magnitude of 7.4, and the second occurred at a depth of less than 10 km with a magnitude of 6.1. The deeper and much larger event was felt over a large area, and caused
widespread but relatively minor damage, including about 150 fatalities. In contrast the second, shallow shock, 120 km south-west of the first, caused great damage within a relatively small area, killing about 1200 people, but it was felt within a radius of only 200 km. If this pair of earthquakes had occurred in the pre-instrumental period it is very likely that their effects could have been conflated into a single event of large epicentral intensity and large radius of perceptibility, to which one could assign a shallow depth and a large magnitude.

Few earthquakes before the mid-1970s have hitherto been assigned a surface wave magnitude. Gutenberg and Richter (1965), Abe (1981), and Abe and Noguchi (1983a, b) have calculated Ms or mb values for fewer than 8% of the 147 post-1892 instrumentally recorded events discussed in this article.

Our study commenced by reviewing each event in the parametric catalogs described above to remove double entries, obvious errors and spurious events. For 1410 remaining events we merged a large body of macroseismic information derived from diverse primary sources, both published and unpublished.

Early earthquakes are far less well located and it is often difficult to ascertain even their true epicentral area, although for most of them there is little ambiguity about their general location. While it is certain that many small to medium magnitude events are absent in the record, it can reasonably be assumed that those few for which damage details survive were important events.

The final dataset consists of 1312 shallow earthquakes of all magnitudes, 98 fewer than in recent parametric catalogs. Discarded entries include spurious events, repeated entries, field explosions in Uzbekistan, and underground detonations in Turkmenistan in the 1960s and 1970s. Macroseismic epicentral locations before the 1970s, if well defined, were selected in preference to instrumental epicentral locations, and constitute 12% of the total number of entries. Otherwise instrumental locations and focal depths were adopted, in a descending order of preference, 9% from Engdahl et al (1998), for well determined earthquakes (DEQ); and 6% from Quittmeyer & Jacob (1979) after checking. Locations in northern Afghanistan reported by the Russian network (15%) and by ISC were also used (48%), while a number of events before 1966 of particular interest were relocated in this study using the ISC procedure (4%). Fewer than 4% of the entries in the dataset were adopted from Nowroozi (1971), BCIS and USGS.

For all the earthquakes identified in the region after 1896 we examined station bulletins for associated surface-wave readings of amplitudes and periods, and for events where such data were found, surface wave magnitudes were calculated from the Prague formula (Willmore, 1979) without restricting its validity to the arbitrary chosen narrow period and distance range employed by NEIS and ISC. The calculation of station magnitudes with station corrections required the compilation of a magnitude database that required extracting about 9,000 surface wave amplitude/period readings from station bulletins, which were then used to estimate Ms event values for 545 earthquakes.

Having calculated Ms for the most important events of the last century we proceeded to assess semi-empirically their moment magnitude, MW. Seismic moments Mo of earthquakes after 1977 were taken from the Harvard Moment Tensor Solution Catalog (CMT). To these we added a few seismic moments for post-1969 events that were calculated from special studies of body-wave modeling.

First we considered the global average log(Mo)-Ms relations of Ekström and Dziewonski (1988). However, as these authors point out, there is regional bias in Mo and such global
relationships may be inappropriate for the estimation of tectonic motion in continental regions. We therefore calculated a regional Ms - log(Mo) relation which is based on the 94 Ms - log(Mo) pairs from crustal events (h<40km), binned into units of 0.2 in Ms and 0.2 in log Mo. We used a bilinear relation with slope 1.0 at Ms<6.2 and slope 1.5 at Ms>6.2, for which there is theoretical justification (Ambraseys and Douglas, 2000), and obtained

\[
\log M_0 = 19.09 + M_S \quad \text{for} \quad M_S \leq 6.2 \quad \text{............(1.1)}
\]

and

\[
\log M_0 = 15.94 + 1.5M_S \quad \text{for} \quad M_S > 6.2 \quad \text{............ (1.2)}
\]

with Mo in dyne-cm. These relations fit the data well (Figure 5). In this figure the two small events (<4.5) that fall well above the fitted relation are probably subcrustal events whose Ms have not been corrected appropriately for depth. The data fit equally well above the regression calculated above if the regression coefficients are determined from individual, rather than binned, data points. These relations differ little from (1.1 & 1.2) and for a given Ms yield smaller Mo values than the global average relation of Ekström and Dziewonski (1988) by an average factor of 0.68 for M_s≤6.2, and by 0.62 for Ms> 6.2.

A similar overestimation of Mo from global relations was found from a much larger number of data for the Eastern Mediterranean region, which confirms that in these areas global Ms-Mo relations yield Mo values that are too high while regional relations yield values closer to those calculated directly (Ambraseys 2001). From the derived Ms to Mo relations (1.1 & 1.2) we estimated seismic moments for those events for which only Ms was previously available.

Table 1 lists all 52 earthquakes before 1891 for which we could find information from contemporary sources. Table 2 presents a list of 148 shallow Ms ≥ 5.5 earthquakes from 1891 to 2002. Appendix 1 summarizes the macroseismic effects of the more important earthquakes in these tables. For shocks in surrounding countries this information is given in the publications quoted. Table 3 presents a list of 1313 earthquakes from earliest times to the present. The temporal density of known historic earthquakes as a function of time is illustrated in Figure 6.

Figure 6 Earthquake history in the complete catalogue illustrating the sparsity of data throughout most of the past 1200 years, compared to the increase in accounts from explorers in the mid 19th century and the abundant 20th century instrumental record.

DISCUSSION

Most pre-19th century earthquakes were reported along trade routes (Figure 3) that have remained unchanged since pre-Hellenistic times, governed as they are by the physiography of Afghanistan and the availability of fresh water. This, and the propensity for established and persistent settlements to develop along and at the confluence of trade routes, brings with it the danger that the surviving historic record provides a somewhat biased geographic view of Afghanistan seismicity. Yet the absence of recent earthquakes in the large desert depressions of Afghanistan suggests that these regions are empty of both roads and earthquakes. The one exception to this observation is the cluster of deep subduction earthquakes beneath the sparsely populated Chagai Mountains along the southern border of Afghanistan with Baluchistan (see front cover).
Deformation along the eastern and western margins of Afghanistan is highlighted by seismicity throughout historic and recent time. Afghanistan appears is a promontory of the Eurasian plate penetrating southward between Iran and India, with relatively minor seismic evidence for significant convergence in the northern Afghan mountains, as suggested by recent GPS data from SW of Farah. The total cumulative seismic moment release in the entire catalog (1.6x10^{28} dyne cm) is roughly 50% higher in eastern Afghanistan than in western Afghanistan (1.1x10^{28} dyne cm). If the Hindu Kush and Kopeh Dag regions north of 35 °N are ignored (thereby removing the contribution from thrust and deep earthquakes from the summation), the rates are comparable (≈8x10^{27} dyne cm). Despite this similarity, the seismic record is considered too incomplete to estimate a meaningful slip rate on Afghanistan’s eastern and western borders.

The historic record in eastern Afghanistan within the Chaman fault system on Afghanistan’s eastern boundary with the Indian plate is much sparser than in western Afghanistan with merely three significant earthquakes in the period 800-1800. Moreover, different plate boundary processes prevail. An example of strain partitioning occurred in the 1930’s (Ambraseys and Bilham, 2003). The Mach 1931 (Ms=7.3) earthquake absorbed approximately 1 m of east-west convergence, followed in 1935 by the Quetta (Ms=7.7) earthquake with more than 3 m of inferred sinistral slip. Distributed seismicity in the 400-km-wide Sulaiman lobe of western Pakistan represents significant shallow thrusting in this region, that also does not contribute directly to plate boundary slip. A scalar summation of moment release along this eastern boundary thus results in a misleading estimate of plate boundary slip rates along Afghanistan’s eastern boundary.

Silent both in the historic record and in the record of recent seismicity is a 300-400 km segment of the Chaman fault system on the Afghan/Baluchistan border between 31° and 33.5°N. The absence of historic earthquakes here, with the exception of the 1892 M=6.8 Chaman earthquake at the southern end of this segment, may represent a gap in the historic record, but it is unlikely that events since 1890 are missing. The locations of the 1857 Kandahar, and the 1505 and 1891 Kabul earthquakes appear to be too far from the plate boundary to represent activity on the Chaman fault. The plate boundary velocity at this location is estimated to be 2-4 cm/yr suggesting that M>7 events could occur at <200 year intervals.

The historical record reveals damaging events along the northern mountains fronting the Turam depression and in Turkmenistan. This suggests that some convergence is occurring between Asia and the Sistan block. The absence of recent earthquakes in the western half of this region and their occurrence intermittently in the past 1200 years suggests that future earthquakes may not be unexpected in this region (Figures 3 & 4). Recent earthquakes along this zone have occurred with decreasing frequency and magnitude towards the west suggesting that convergence between the Sistan block and Asia may result in minor counter-clockwise rotation of the Sistan block relative to Asia. This would have the effect of reducing both the left-lateral slip rate and the convergence rate on the Chaman transform fault system.

In 1956 a crustal Mw=7.4 earthquake occurred near and north of Bamiyan. The trend of maximum damage strikes to the north. A Mw=7.4 earthquake is typically associated with 1-2 m of slip on a fault rupture 50-100 km long, but there there is no mapped fault between the Herat and Andarabad faults on which this could have occurred, and there are no reports of surface rupture on any of the faults in the region (see appendix).

The Herat fault is a suture between earlier continental margins, similar to the Indus-Tsangpo suture north of the Himalaya. Like that suture, the western Herat fault may be a
tectonically inert lithological boundary. Few earthquakes have occurred there during the medieval period in Herat, and the fault west of Bamiyan lies in a region where no teleseismically recorded earthquakes have been reported. However, the apparent absence of large earthquakes on the Herat fault for the past 1200 years should not be taken to imply that these events cannot occur. Currently the most seismicity-free segments of the San Andreas system are those two segments that sustained the largest ruptures: the 1906 San Francisco, and the 1857 Fort Tejon earthquakes.

In principle, additional insight into tectonic activity near the Bamiyan region is to be obtained from the resurvey of triangulation series first measured more than 120 years ago in the region (Figure 7). Accurate survey measurements along the Herat Fault from Herat to beyond the Bamiyan region were undertaken in 1884/6 in the measurement of the Kuhsan and Bamiyan Triangulation Series (Survey of India Technical Report, 1948). These surveys were typically accurate to 10 ppm in scale and 7 µradian in angle. Early triangulation surveys in the south, east and west were linked to Survey of India survey networks in Baluchistan, Iran and India (Burrard, 1909; Ambraseys and Bilham, 2003). To our knowledge none of these surveys have been remeasured.

Figure 7 Violet-shaded regions outline pre-1950 triangulation surveys first measured 1884-6 except where indicated (Survey of India, 1948). To our knowledge none of these surveys, with the exception of points overlapping the south Afghan border region (Burrard, 1909) have been remeasured. The remeasurement of the 1940 Survey, and the 1884 Kuhsan and Bamiyan Series would be of value in quantifying deformation during the 1956 Bamiyan earthquake.

CONCLUSIONS

The historical record in Afghanistan for the past 1200 years delineates a tectonic view of the country ploughing southward into the Arabian and Indian plates as a promontory of the Eurasian plate. Both its western margin with Iran, and its eastern boundary with Baluchistan, have a long history of damaging earthquakes, with the exception a ≈300 km segment of the Chaman fault system. This segment represents a real seismic gap in significant earthquakes in the past century, and a possible gap in historical knowledge in earlier centuries, since no evidence for creep on the faults in the region between 31°N and 33°N has been reported. We note that a large earthquake on the northern Chaman fault would result in significant damage in the Kabul region.

Deep earthquakes are associated with subduction of the Arabian plate beneath the Makran coast along its southern border, and with a descending slab beneath NE Afghanistan. Because of incomplete spatial reporting, these deep earthquakes are difficult to distinguish in the historical record from shallow earthquakes that occur at similar times. This may have the effect of biasing upward the estimated magnitude of an earthquake sequence if unwittingly assessed as a single event. A pair of earthquakes in March 2002 provide a recent example of
such a sequence – the 4 March M=7.2 earthquake at >150 km depth causing widespread low intensity damage, followed on 25-27 March by a sequence of shallow Ms≤6 earthquakes with severe surface intensities.

The greater part of the interior of Afghanistan is seismically inactive, but the more heavily populated north and east experience significant seismicity. In particular, north-eastern Afghanistan, near and north of the capital, Kabul, has a long history of damaging deep and shallow earthquakes. Historical earthquakes along the north-facing frontal ranges in western Afghanistan have no recent instrumental counterparts suggesting that infrequent future damaging earthquakes will recur in this region.

Bamiyan lies 230 km to the ENE of Kabul in a transition region between the aseismic interior of Afghanistan and the eastern plate boundary. Although a Mw=7.4 earthquake occurred near Bamiyan on 9 June 1956 there is no historical evidence for previous earthquakes in this region. The strike of the 1956 earthquake appears to have been to the north or northeast, and may have occurred on a conjugate fault linking the Herat and Andarabad fault. Historical geodesy may provide additional insight into the tectonics of the Bamiyan region, since several surveys were measured 1880-1940. Their remeasurement may reveal surface deformation associated with the tectonics of the region. However, as yet none of these early surveys have been re-measured.

ACKNOWLEDGMENTS

We thank James Jackson for discussions concerning the active tectonics of the region, and Ruben Tatevosian and George Hallows for helping with the retrieval of information from the Russian and Pakistani press respectively. RB was supported by National Science Foundation grant number NSF EAR000399.

REFERENCES

Newspapers With very few exceptions, references to press reports are omitted.

ZAK Zakaspskoe Obozrenie:21-23.12.10, Ashkhabad
TUR Turkestanskie Vedomosti:21.12.10, Tashkent

Abbreviations

BAAS British Association for the Advancement of Science; Seismological Committee Reports, 1890-1917
BCIS Bureau Central de l'Association International de Sismologie, Catalogues & Reports, Strasbourg, 1902-1914
DLG Delhi Gazette, 19-20.02.1842
ENG Englishman (Calcutta) 16.05.1842 et seq.
GSH Global Seismic Hazard Assessment Program (GSHAP see Annali di Geofisica 1999)
JASB J. Asiat.Soc. Bengal, vol.1, p.34, 146, 1832; ii 439 & 564; xii.1049.
IO India Office, Political Proceedings of the Government of India, P/S various London
ISS International Seismological Summary, 1918-1963
ITT Ittilaat (Tehran)
NAT Nature (London)
PAI Paisa (Lahore)
SMT Seism. Monatschr. Tiflis Seism. Observatory
SZ Sredneaziatskaya Zhizn 1906:222,262
TIM The Times (London)
TIN The Times of India (Delhi)
TV Turkestanskie Vedomosti (Tashkent) 1906.161, 1910.282, 286
USG U.S. Geological Survey Earthquake Data Base, National Earthquake Information Center, (Updated 2001)
Z0 Zakaspiyskoe Obozrenie (Ashkhabad) 1910.280-281

Historical Sources
Abu 'l-Fadl 'Allami, Akbar-namah, i.236, Bibl. Ind. 1881, [1569]
Fasih Khwafi, Mujmil-i Fasihi, ed. M. Farrukh, 3 vols, Mashhad, 1340/1961
Hafiz-i Abru, Nur al-Din, Majmu' al tawarikh, in F. Tauer, Cinq opuscules de Hafiz-i Abru concernant l'histoire de l'Iran au temps du Tamerlan, Prague 1959
Ibn al-Athir, 'Izzal-Din, al-Kamil fi 'l-tarikh, (13th c.) ed. C.J. Tornberg, Leiden 1851-76
Ibn al-shihna, Muhammad, Raudat al munazir fi akhbar al-awa'il wa'l-awakhir, Marginal work in vols 7-9 of Ibn al-Athir (vol.7, p.59)
Isfizari, Mu'in al-Din, Raudat al jannat fi ausaf madinat Harat, ed. M. Kazim Imam, 2 vols, Tehran 1338/1959
al-Suyuti, Jelal al-Din, kashf al-salsala 'an wasf al-zalzala, ed. A.L.Sa'dani, Fez. 1971
al-Umari, Yasin al-Khatib, Al-athar al-jaliya fi 'l-hawadith al-ardiya, Yaqut, Abdallah, Mu'jam al-buldan, ed. Wüstenfeld, Leipzig, 1866-73

Journal Articles

Dupree N.H. (1971) *A historical guide to Afghanistan*, Afghan Air Authority, Kabul

Eyre V. (1843) *The military operations at Cabul*, J. Murray, London

Farah A. (1976) A study of recent seismotectonics in Pakistan presented at the CENTO Working Group on Recent Tectonics, Instanbul (manuscript)

Furon R. (1925b) *L'Afghanistan*, Paris

Gorshkov G.P. (1941) *Katalog zemletriasenii na territorii CCCP*, Trudi Seismolog. Inst., no.95. p.28, Moscow

Rebeur-Paschwitz E. von (1893) Ueber die Aufzeichnung der Fernewirkungen von Erdbeben, *Petermann Mitteil.* vol.9, pp.201-212

Wood J. (1872) *A journey to the sources of the river Oxus*, J. Murrey, London

Yule H. (1858) *A narrative of the mission sent by the Govt.-General of India to the court of Ava in 1855, with notices of the country*, London

FIGURE CAPTIONS

Figure 1 Bamiyan lies at the centre of the mountains of central Afghanistan on an ancient trade route linking east to west through the valley of the great Herat fault. North/south and east/west topographic sections through Bamiyan show its location relative to surrounding mountains. The east-west approaches to Bamiyan along the Herat fault are impeded by 3-km-high passes that isolate the 2500-km-high Bamiyan Valley. The Shekari river drains the valley NE towards Baghlan.

Figure 2a (left) A map of Afghanistan showing prominent faults, and major earthquakes described in the article. In 1956 a significant earthquake occurred near Bamiyan in the block bounded by the Andarabad fault and the Herat fault.

Figure 2b A variety of stress indicators reveal the direction of principal compressive stress on the eastern and western edges of Afghanistan. Afghanistan lies with a 1200 km promontory of the Asian plate (stippled). (Data from World Stress Map)

Fig. 3 Evolution of Afghan trade routes in the past 1300 years showing the dates of historic earthquakes discussed in the text. Pre-1800 major routes indicated by thick lines, minor routes by thin lines.

Fig.4 Seismicity of Afghanistan. a) Historical earthquakes 732-1890 from Figure 2 and Table 1, b) significant events since 1890 from Table 2. c) Historical and recent significant earthquakes from a. and b. d) shows the entire catalog (Tables 1 & 2 and 3).

Fig.5 A plot of Ms vs log(Mo) for recent well-located events reveals a change in scaling at approximately Ms=6.2. We use these relations to derive the moment magnitudes for other earthquakes in the catalog for which we have obtained surface-wave magnitudes.

Fig.6 Earthquake history of complete catalogue illustrating the sparcity of data throughout most of the past 1200 years, compared to the increase in accounts from explorers in the mid 19th century and the abundant 20th century instrumental record.

Fig. 7 Shaded regions outline pre-1950 triangulation surveys first measured 1884-6 except where indicated (Survey of India, 1948). The names of each Triangulation Series are indicated. To our knowledge none of these surveys, with the exception of points overlapping the south Afghan border region (Burrard, 1909) have been remeasured. The remeasurement of the 1940 Survey, and the 1884 Khusan Series and Bamiyan Series would be of value in quantifying deformation during the 1956 Bamiyan earthquake.
Index to Tables 1-3

Y, M, D, OT correspond to year, month, day and origin time in hours and minutes.
E and N corresponds to longitude and latitude in degrees respectively.
R Epicentral locations were adopted from the following sources
1- Epicenters computed by BAAS/ISS/ISC
2- Rough macroseismic locations or epicenters adopted by BAAS/ISS with no calculation. Calculated from the Prague formula with station corrections
3- Macroseismic epicenters from well defined macroseismic observation
4- Relocated positions using ISC procedures
5- For early earthquakes, locations calculated by Ambraseys and Melville for western Afghanistan
6- Quittmeyer and Jacob relocated events in the time period 1914 through 1965, using a computer program similar to the one described by Bolt (1960) (Quittmeyer and Jacob 1979)
7- From Engdahl et al. 1998. We adopted only recomputed locations that have a well determined depth (DEQ in their columns 2-4).
8- Few locations were taken from BCIS for the period 1953 through 1965 during which ISS did not report small events.
9- In the absence of other locations we accepted some data marked LEQ and FEQ from Engdahl et al. (1998).
10- Nowroozi recalculated epicentral locations of earthquakes in the region between 1950 and 1965, using the program by Sykes and Landisman (1964) Nowroozi (1971). N
11- PDE locations
0- Locations in northern Afghanistan taken fron reports of the Soviet network.

n number of seismographic stations used by ISS/ISC to calculate epicentral position
p actual number of stations greater than that given by ISS/ISC
M_s Surface wave magnitude
r 1: calculated from the Prague formula with station corrections
 2: calculated from the Prague formula from few stations with station corrections
 3: ISC
 4: Moscow
 5: calculated from macroseismic data
h focal depth from sources in R
log(M_o) dyne.cm
q 0: Mo not available
 1: CMT Harvard
 2: converted from M_s from equations described in text
 3: from other sources: (Bernard et al., 2000)
M_o moment magnitude
m_b (or m_B) body wave magnitude from ISC
M surface wave magnitude from ISC
TABLE 1 Significant historic Afghanistan Earthquakes 734-1891. Fifty one earthquakes are listed of which 11 are described in narrative accounts.

<table>
<thead>
<tr>
<th>Y</th>
<th>M</th>
<th>D</th>
<th>OT</th>
<th>N</th>
<th>E</th>
<th>R</th>
<th>Mw</th>
<th>r</th>
<th>logMo</th>
<th>q</th>
<th>Mw</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>734</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31.6</td>
<td>60.5</td>
<td>3</td>
<td>6.5</td>
<td>5</td>
<td>25.7</td>
<td>2</td>
<td>6.4</td>
<td>Sistan-I</td>
</tr>
<tr>
<td>763</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33.3</td>
<td>59.3</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>27.3</td>
<td>2</td>
<td>7.5</td>
<td>Qayin-I</td>
</tr>
<tr>
<td>805</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>29.5</td>
<td>60.5</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>26.4</td>
<td>2</td>
<td>6.9</td>
<td>Sistan-I</td>
</tr>
<tr>
<td>815</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29.5</td>
<td>60.5</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>26.4</td>
<td>2</td>
<td>6.9</td>
<td>Sistan-I</td>
</tr>
<tr>
<td>819</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>36.4</td>
<td>65.4</td>
<td>3</td>
<td>7.4</td>
<td>5</td>
<td>27</td>
<td>2</td>
<td>7.3</td>
<td>Balkh</td>
</tr>
<tr>
<td>849</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34.3</td>
<td>62.2</td>
<td>3</td>
<td>5.3</td>
<td>5</td>
<td>24.4</td>
<td>2</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>1066</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>33.9</td>
<td>59.2</td>
<td>3</td>
<td>6.5</td>
<td>5</td>
<td>25.7</td>
<td>2</td>
<td>6.4</td>
<td>Kuhistan-I</td>
</tr>
<tr>
<td>1102</td>
<td>2</td>
<td>28</td>
<td>1800</td>
<td>34.4</td>
<td>62.2</td>
<td>3</td>
<td>5.3</td>
<td>5</td>
<td>24.4</td>
<td>2</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>1145</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36.2</td>
<td>58.8</td>
<td>3</td>
<td>5.3</td>
<td>5</td>
<td>24.4</td>
<td>2</td>
<td>5.6</td>
<td>Nishapur-I</td>
</tr>
<tr>
<td>1209</td>
<td>0</td>
<td>0</td>
<td>1200</td>
<td>36.4</td>
<td>58.7</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>27.3</td>
<td>2</td>
<td>7.5</td>
<td>Nishapur-I</td>
</tr>
<tr>
<td>1238</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34.3</td>
<td>58.7</td>
<td>3</td>
<td>5.3</td>
<td>5</td>
<td>24.4</td>
<td>2</td>
<td>5.6</td>
<td>Gonabad-I</td>
</tr>
<tr>
<td>1251</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36.2</td>
<td>58.8</td>
<td>3</td>
<td>5.3</td>
<td>5</td>
<td>24.4</td>
<td>2</td>
<td>5.6</td>
<td>Nishapur-I</td>
</tr>
<tr>
<td>1270</td>
<td>10</td>
<td>7</td>
<td>1200</td>
<td>36.2</td>
<td>58.8</td>
<td>3</td>
<td>7.1</td>
<td>5</td>
<td>26.6</td>
<td>2</td>
<td>7</td>
<td>Nishapur-I</td>
</tr>
<tr>
<td>1336</td>
<td>10</td>
<td>21</td>
<td>600</td>
<td>34.7</td>
<td>59.7</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>27.3</td>
<td>2</td>
<td>7.5</td>
<td>Kwaf-I</td>
</tr>
<tr>
<td>1364</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>34.9</td>
<td>61.7</td>
<td>3</td>
<td>5.8</td>
<td>5</td>
<td>24.9</td>
<td>2</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>1389</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>36.2</td>
<td>58.8</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>27.3</td>
<td>2</td>
<td>7.5</td>
<td>Niishapur-I</td>
</tr>
<tr>
<td>1405</td>
<td>11</td>
<td>23</td>
<td>0</td>
<td>36.2</td>
<td>58.8</td>
<td>3</td>
<td>7.6</td>
<td>5</td>
<td>27.3</td>
<td>2</td>
<td>7.5</td>
<td>Nishapur-I</td>
</tr>
<tr>
<td>1410</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36.7</td>
<td>66.8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Balkh</td>
</tr>
<tr>
<td>1428</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35.9</td>
<td>63.8</td>
<td>3</td>
<td>6.5</td>
<td>5</td>
<td>25.7</td>
<td>2</td>
<td>6.4</td>
<td>Taliqan</td>
</tr>
<tr>
<td>1493</td>
<td>1</td>
<td>10</td>
<td>600</td>
<td>33</td>
<td>59.8</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>26.4</td>
<td>2</td>
<td>6.9</td>
<td>Muminabad-I</td>
</tr>
<tr>
<td>1505</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>34.5</td>
<td>69.1</td>
<td>3</td>
<td>7.3</td>
<td>5</td>
<td>26.9</td>
<td>2</td>
<td>7.2</td>
<td>Kabul</td>
</tr>
<tr>
<td>1519</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>35</td>
<td>71.5</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Bajaur</td>
</tr>
<tr>
<td>1549</td>
<td>2</td>
<td>15</td>
<td>2400</td>
<td>33.7</td>
<td>60.3</td>
<td>3</td>
<td>6.7</td>
<td>5</td>
<td>26</td>
<td>2</td>
<td>6.6</td>
<td>EQayin-I</td>
</tr>
<tr>
<td>1619</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>35.1</td>
<td>58.9</td>
<td>3</td>
<td>6.5</td>
<td>5</td>
<td>25.7</td>
<td>2</td>
<td>6.4</td>
<td>Dughabad-I</td>
</tr>
<tr>
<td>1673</td>
<td>7</td>
<td>30</td>
<td>0</td>
<td>36.3</td>
<td>59.3</td>
<td>3</td>
<td>6.6</td>
<td>5</td>
<td>25.8</td>
<td>2</td>
<td>6.5</td>
<td>Mashhad-I</td>
</tr>
<tr>
<td>1678</td>
<td>0</td>
<td>0</td>
<td>2400</td>
<td>34.3</td>
<td>58.7</td>
<td>3</td>
<td>6.5</td>
<td>5</td>
<td>25.7</td>
<td>2</td>
<td>6.4</td>
<td>Gonabad-I</td>
</tr>
<tr>
<td>1687</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Mashhad-I</td>
</tr>
<tr>
<td>1827</td>
<td>3</td>
<td>17</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1829</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1832</td>
<td>1</td>
<td>22</td>
<td>0</td>
<td>36.5</td>
<td>71.3</td>
<td>3</td>
<td>7.4</td>
<td>5</td>
<td>27</td>
<td>2</td>
<td>7.3</td>
<td>Badakhshan</td>
</tr>
<tr>
<td>1833</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37.3</td>
<td>58.1</td>
<td>3</td>
<td>6.2</td>
<td>0</td>
<td>25.3</td>
<td>2</td>
<td>6.2</td>
<td>Shirvan-I</td>
</tr>
<tr>
<td>1833</td>
<td>4</td>
<td>19</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1836</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1837</td>
<td>12</td>
<td>14</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1838</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29.6</td>
<td>59.9</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>26.4</td>
<td>2</td>
<td>6.9</td>
<td>Nasratabad-I</td>
</tr>
<tr>
<td>1838</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>35.4</td>
<td>66.8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Jurm</td>
</tr>
<tr>
<td>1840</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
</tr>
<tr>
<td>1842</td>
<td>2</td>
<td>19</td>
<td>1140</td>
<td>35</td>
<td>71.3</td>
<td>7.5</td>
<td>5</td>
<td>27.2</td>
<td>2</td>
<td>7.4</td>
<td>Kunar</td>
<td></td>
</tr>
<tr>
<td>1851</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>36.8</td>
<td>58.4</td>
<td>3</td>
<td>6.9</td>
<td>5</td>
<td>26.3</td>
<td>2</td>
<td>6.8</td>
<td>Quchan-I</td>
</tr>
<tr>
<td>1852</td>
<td>1</td>
<td>24</td>
<td>345</td>
<td>29.3</td>
<td>68.6</td>
<td>3</td>
<td>6.7</td>
<td>5</td>
<td>26</td>
<td>2</td>
<td>6.6</td>
<td>Khun</td>
</tr>
<tr>
<td>1857</td>
<td>6</td>
<td>0</td>
<td>1230</td>
<td>31.6</td>
<td>65.7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kandahar</td>
</tr>
<tr>
<td>1858</td>
<td>8</td>
<td>25</td>
<td>0</td>
<td>28.3</td>
<td>68.4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Jacobabad-P</td>
</tr>
</tbody>
</table>
TABLE 2 Significant Afghanistan Earthquakes 1892-2002. One hundred and forty-seven are listed and 36 are described in narrative accounts.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>OT</th>
<th>N</th>
<th>E</th>
<th>RR</th>
<th>(n)</th>
<th>(M_n)</th>
<th>(R_h<40)</th>
<th>(\log M_b)</th>
<th>(m_B)</th>
<th>(m_b)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1871</td>
<td>12</td>
<td>23</td>
<td>1800</td>
<td>37.4</td>
<td>58.4</td>
<td>3</td>
<td>7.2</td>
<td>0</td>
<td>26.7</td>
<td>2.7</td>
<td>1</td>
<td>Quachan-I</td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>29.6</td>
<td>67.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Sibi-P</td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>10</td>
<td>18</td>
<td>0</td>
<td>35.1</td>
<td>69.2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>26.4</td>
<td>2.6</td>
<td>9</td>
<td>Kohistan</td>
<td></td>
</tr>
<tr>
<td>1880</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>33.9</td>
<td>70.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Khurum</td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>12</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quetta-P</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>36.7</td>
<td>67.1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Mazar</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>9</td>
<td>0</td>
<td>2100</td>
<td>36.3</td>
<td>59.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Kabul</td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>34.5</td>
<td>68.5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Paghman</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides data on significant Afghanistan earthquakes from 1871 to 2002, including information on magnitude, location, and other relevant details.
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Number of Deaths</th>
<th>Annual Average Temperature</th>
<th>Annual Rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1914</td>
<td>11</td>
<td>4</td>
<td>1106</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1917</td>
<td>8</td>
<td>29</td>
<td>1300</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1917</td>
<td>11</td>
<td>28</td>
<td>1442</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1917</td>
<td>12</td>
<td>1</td>
<td>947</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1918</td>
<td>3</td>
<td>24</td>
<td>2314</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1918</td>
<td>11</td>
<td>29</td>
<td>1041</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1919</td>
<td>5</td>
<td>23</td>
<td>610</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1919</td>
<td>6</td>
<td>1</td>
<td>1246</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1919</td>
<td>6</td>
<td>15</td>
<td>1849</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1920</td>
<td>2</td>
<td>27</td>
<td>351</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1923</td>
<td>5</td>
<td>25</td>
<td>2221</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1923</td>
<td>7</td>
<td>16</td>
<td>1323</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1923</td>
<td>9</td>
<td>14</td>
<td>810</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1923</td>
<td>10</td>
<td>1</td>
<td>816</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1928</td>
<td>3</td>
<td>8</td>
<td>1814</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1928</td>
<td>8</td>
<td>21</td>
<td>1902</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1929</td>
<td>6</td>
<td>4</td>
<td>704</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1929</td>
<td>7</td>
<td>13</td>
<td>736</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1931</td>
<td>8</td>
<td>24</td>
<td>2135</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1931</td>
<td>8</td>
<td>27</td>
<td>1527</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1931</td>
<td>8</td>
<td>28</td>
<td>1940</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1932</td>
<td>9</td>
<td>8</td>
<td>725</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1933</td>
<td>10</td>
<td>16</td>
<td>435</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1935</td>
<td>5</td>
<td>15</td>
<td>201</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1935</td>
<td>5</td>
<td>30</td>
<td>2133</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1935</td>
<td>6</td>
<td>2</td>
<td>916</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1935</td>
<td>10</td>
<td>28</td>
<td>1205</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1936</td>
<td>6</td>
<td>30</td>
<td>1926</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1937</td>
<td>11</td>
<td>11</td>
<td>1711</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1937</td>
<td>11</td>
<td>13</td>
<td>1150</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1938</td>
<td>12</td>
<td>19</td>
<td>1856</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1940</td>
<td>5</td>
<td>4</td>
<td>2101</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1940</td>
<td>7</td>
<td>17</td>
<td>636</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1940</td>
<td>7</td>
<td>17</td>
<td>1144</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1940</td>
<td>8</td>
<td>1</td>
<td>1945</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1941</td>
<td>2</td>
<td>16</td>
<td>1639</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1945</td>
<td>10</td>
<td>1</td>
<td>516</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1946</td>
<td>6</td>
<td>20</td>
<td>379</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1947</td>
<td>9</td>
<td>23</td>
<td>1228</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1947</td>
<td>9</td>
<td>26</td>
<td>304</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1948</td>
<td>1</td>
<td>28</td>
<td>1551</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1948</td>
<td>6</td>
<td>18</td>
<td>1844</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>1948</td>
<td>10</td>
<td>5</td>
<td>2012</td>
<td>22.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Year</td>
<td>Value</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>224230230.1</td>
<td>69 6 55 5.9 1 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>5 9 111637.9 58.4 3 120 6.4 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>924225634.5 60.7 3 91 5.6 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>514 40730.2 70.1 6 76 5.7 2 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>915112830.6 70 6 50 5.5 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>1010184730.4 69.3 3 147 6.2 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>122522229.3 70 4 124 6 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>123160637.4 72.5 0 67 5.8 4 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>218224830.2 67 3 85 5.7 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>1111221630 69.6 6 -1 5.5 4 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>513 750 30 69.9 3 90 5.9 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>6 9231335.1 67.5 6 334 7.4 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>610 10134.9 67.7 6 -1 5.6 1 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>916 83733.8 69.6 3 250 6.7 1 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>9241020 34 69.6 6 114 5.6 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>322110735.3 67.4 6 120 5.9 1 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>814223736.3 69.9 0 90 5.5 4 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>912205736.4 69 4 147 6 1 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>22155637.4 73 1 152 6 1 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>2742629.8 69.5 3 245 6.7 1 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>27230630.2 69.8 7 230 6.5 1 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>81190929.9 68.7 3 229 6.1 1 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>81203029.9 68.6 7 179 5.8 4 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>81210230.2 68.8 3 286 6.9 1 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>1025100729.9 68.8 7 122 5.8 2 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>8311047 34 59 3 301 7.2 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>9172734.1 58.2 1 262 6.5 1 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>9111917 34 59.5 3 162 6 1 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>1115625 38 58.1 3 127 5.9 1 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>526 24135.5 58.3 3 185 5.6 1 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>981253 29 60.2 3 151 5.6 4 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>624152936.3 69.7 7 336 6.4 1 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>120124629.4 68.6 7 98 5.6 4 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>12281211 35 72.9 7 358 6.3 1 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>351430.2 66.3 7 281 6.8 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>3173130.4 66.4 7 293 6.5 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>319130336.6 67.8 7 266 5.5 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>17 400 33.8 59.2 3 321 6.5 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>71380929.9 67.3 7 196 5.6 1 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>31615929.9 66.2 7 239 5.9 1 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>56111629.8 66.1 7 291 5.8 1 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>11695033.8 59.5 3 384 6.8 1 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>114221 34 59.8 4 399 6.6 1 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>11271710 34.1 59.8 1 411 7.2 1 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>17 923 34.1 59.9 1 319 6 1 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>1216 40 36.1 69 7 530 6.5 1 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations:
- Sulaiman-P
- Bamiyan
- Duki-P
- Dasht
- Gonabad
- Spin-Tezha-P
- Spin-Tezha-P
- Khulm
- Buniabad
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>2</td>
<td>1</td>
<td>1422</td>
<td>34.6</td>
<td>70.5</td>
<td>7</td>
<td>485</td>
<td>5.9</td>
<td>3</td>
<td>9</td>
<td>25</td>
<td>1</td>
<td>6.5</td>
<td>5.9</td>
<td>5.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>5</td>
<td>6</td>
<td>304</td>
<td>30.9</td>
<td>70.3</td>
<td>7</td>
<td>436</td>
<td>5.7</td>
<td>1</td>
<td>17</td>
<td>24.9</td>
<td>1</td>
<td>5.9</td>
<td>5.6</td>
<td>5.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>3</td>
<td>4</td>
<td>1946</td>
<td>29</td>
<td>66.4</td>
<td>4</td>
<td>515</td>
<td>6.1</td>
<td>1</td>
<td>20</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>5.8</td>
<td>6.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>5</td>
<td>10</td>
<td>404</td>
<td>37.2</td>
<td>72.9</td>
<td>7</td>
<td>508</td>
<td>5.6</td>
<td>3</td>
<td>38</td>
<td>24.8</td>
<td>1</td>
<td>5.8</td>
<td>5.5</td>
<td>5.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>5</td>
<td>20</td>
<td>1220</td>
<td>33.3</td>
<td>71.3</td>
<td>7</td>
<td>607</td>
<td>6.1</td>
<td>20</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>5.9</td>
<td>6</td>
<td>Kohat</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>8</td>
<td>28</td>
<td>50</td>
<td>29.2</td>
<td>66.8</td>
<td>7</td>
<td>436</td>
<td>5.6</td>
<td>1</td>
<td>5</td>
<td>24.4</td>
<td>1</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>11</td>
<td>16</td>
<td>1552</td>
<td>30.8</td>
<td>67.2</td>
<td>7</td>
<td>379</td>
<td>5.6</td>
<td>1</td>
<td>29</td>
<td>24.5</td>
<td>1</td>
<td>5.6</td>
<td>5.4</td>
<td>5.6</td>
<td>Pishin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>23</td>
<td>802</td>
<td>30.8</td>
<td>60.5</td>
<td>7</td>
<td>650</td>
<td>6.1</td>
<td>12</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>6</td>
<td>6.1</td>
<td>Sistan</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>24</td>
<td>11</td>
<td>30.8</td>
<td>60.5</td>
<td>7</td>
<td>640</td>
<td>6.1</td>
<td>10</td>
<td>25.5</td>
<td>1</td>
<td>6.3</td>
<td>6</td>
<td>6</td>
<td>Sistan</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>26</td>
<td>231</td>
<td>30.8</td>
<td>60.5</td>
<td>7</td>
<td>541</td>
<td>5.9</td>
<td>3</td>
<td>7</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>5.7</td>
<td>5.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>28</td>
<td>1135</td>
<td>30.6</td>
<td>60.6</td>
<td>5</td>
<td>400</td>
<td>5.5</td>
<td>3</td>
<td>30</td>
<td>24.5</td>
<td>1</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5</td>
<td>1</td>
<td>1200</td>
<td>36.9</td>
<td>67.1</td>
<td>7</td>
<td>630</td>
<td>6.3</td>
<td>1</td>
<td>23</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>5.9</td>
<td>6.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>6</td>
<td>11</td>
<td>2155</td>
<td>32.6</td>
<td>69.7</td>
<td>7</td>
<td>353</td>
<td>5.6</td>
<td>1</td>
<td>27</td>
<td>24.5</td>
<td>1</td>
<td>5.7</td>
<td>5.1</td>
<td>5.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>2</td>
<td>27</td>
<td>2108</td>
<td>30</td>
<td>68.2</td>
<td>7</td>
<td>678</td>
<td>6.9</td>
<td>1</td>
<td>21</td>
<td>26.7</td>
<td>1</td>
<td>7.1</td>
<td>6.1</td>
<td>6.9</td>
<td>Sibi-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>2</td>
<td>27</td>
<td>2130</td>
<td>30</td>
<td>68</td>
<td>7</td>
<td>498</td>
<td>6.4</td>
<td>3</td>
<td>25</td>
<td>25.5</td>
<td>2</td>
<td>6.3</td>
<td>5.8</td>
<td>6.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td>4</td>
<td>1303</td>
<td>29.4</td>
<td>68.8</td>
<td>7</td>
<td>476</td>
<td>5.8</td>
<td>1</td>
<td>24</td>
<td>24.7</td>
<td>1</td>
<td>5.7</td>
<td>5.3</td>
<td>5.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td>20</td>
<td>850</td>
<td>30.1</td>
<td>68</td>
<td>7</td>
<td>441</td>
<td>5.6</td>
<td>3</td>
<td>27</td>
<td>24.9</td>
<td>1</td>
<td>5.9</td>
<td>5.4</td>
<td>5.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>5</td>
<td>10</td>
<td>757</td>
<td>33.9</td>
<td>59.8</td>
<td>1</td>
<td>725</td>
<td>7.1</td>
<td>1</td>
<td>7</td>
<td>26.9</td>
<td>1</td>
<td>7.2</td>
<td>6.2</td>
<td>7</td>
<td>Zirkuh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>6</td>
<td>25</td>
<td>1938</td>
<td>33.9</td>
<td>59.5</td>
<td>1</td>
<td>541</td>
<td>5.7</td>
<td>1</td>
<td>11</td>
<td>24.9</td>
<td>1</td>
<td>5.9</td>
<td>5.4</td>
<td>5.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>2</td>
<td>4</td>
<td>1433</td>
<td>37.1</td>
<td>70.1</td>
<td>7</td>
<td>552</td>
<td>5.9</td>
<td>1</td>
<td>29</td>
<td>24.9</td>
<td>1</td>
<td>5.9</td>
<td>5.5</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4</td>
<td>10</td>
<td>1500</td>
<td>32.5</td>
<td>60.1</td>
<td>1</td>
<td>458</td>
<td>5.7</td>
<td>3</td>
<td>26</td>
<td>24.7</td>
<td>1</td>
<td>5.8</td>
<td>5.2</td>
<td>5.7</td>
<td>Birjand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>5</td>
<td>30</td>
<td>622</td>
<td>37.1</td>
<td>70.1</td>
<td>7</td>
<td>760</td>
<td>6.5</td>
<td>1</td>
<td>29</td>
<td>25.9</td>
<td>1</td>
<td>6.6</td>
<td>5.7</td>
<td>6.7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>2</td>
<td>11</td>
<td>1409</td>
<td>34.3</td>
<td>69.2</td>
<td>1</td>
<td>432</td>
<td>5.8</td>
<td>3</td>
<td>32</td>
<td>25.1</td>
<td>1</td>
<td>5.9</td>
<td>5.3</td>
<td>5.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>7</td>
<td>12</td>
<td>342</td>
<td>30</td>
<td>69.5</td>
<td>1</td>
<td>565</td>
<td>5.5</td>
<td>1</td>
<td>20</td>
<td>24.6</td>
<td>1</td>
<td>5.7</td>
<td>5.5</td>
<td>5.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>3</td>
<td>25</td>
<td>1456</td>
<td>36</td>
<td>69.4</td>
<td>P</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>25.2</td>
<td>1</td>
<td>6.1</td>
<td>6</td>
<td>6.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>4</td>
<td>12</td>
<td>400</td>
<td>35.9</td>
<td>69.2</td>
<td>P</td>
<td>0</td>
<td>5.9</td>
<td>P</td>
<td>10</td>
<td>25</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>5.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX

NARRATIVE DESCRIPTIONS OF EARTHQUAKES IN AFGHANISTAN 819-2000

819 Jun (7.4) The earliest earthquake in Afghanistan for which we have information occurred in Dhu’l-Hijja 20 aH = June 819, in the region between modern Meymaneh, Andkhvoy and Mazar-i Sharif [Abu'l Fida:ii.26, Ibn al-Shihna:vii.59. Ibn al-Athir]. It affected a large area in which many houses were destroyed, with heavy casualties affecting severely other urban centers many tens of kilometres apart, including Faryab (36.42N, 64.91), Taliqan (35.78N, 64.16E) and others which are not named in the districts of Juzjan in the west, and Tukharistan in the east of these places. The shock destroyed a quarter of the city of Balkh (36.75N, 66.90E) and ruined the masjid-i jami there [Ibn al Jauzi quoted by al-Suyuti:24].

As a result of the earthquake the desert of Sidreh (36.75N, 66.22E) which lies between Shaburghan (36.67N, 65.74E) and Balkh, was flooded by an excessive rise of the water table, which in places turned the country into a fertile area. Some of this flooding seems to have been permanent resulting in creation of new oases [Qudama:210; al-Masudi: pp.43-45].

The shock was felt in Marv (37.56N, 63.32E) and probably also at Amul (39.11N, 63.57E) and Transoxania [Ibn al-Athir:vi.252]. Aftershocks lasted for a month or so. That this earthquake is mentioned by several sources suggests its importance, and from the radius of the felt area we assess a magnitude of Ms≈7.4.

Damage in both Transoxania and the towns of Faryab and Taliqan to the west, is considered unlikely, and it is possible that Ma vara’al-nahr (Transoxania) mentioned in some early sources should stand for Marv al-Rud, or Lesser Marv, i.e. Bala Murghab, which is confirmed by Qudama who says that the regions of Marv and Tukharistan were affected, and probably also Amol [Gorshkov1947]. An earthquake of this magnitude would certainly have been felt across the Oxus, but probably without damage.

849 A series of earthquakes was reported from Herat; information from other areas is lacking. The first damaging shock in Herat in 234 aH = 849 caused some houses to collapse. [Ibn al-Jauzi 38v; al Soyuti 26]. It is most likely the reference is to Herat in Afghanistan, but it should be borne in mind that there was also a town of this name in Fars, near Istakhr [Yaqut iv.959]

1102 Feb 28 This second Herat earthquake destroyed a number of houses and other buildings, including heavy damage to the masjid-i jami, with some casualties in the city. According to Isfizari:ii.55, on the night of Friday 8 Jumada I, 495, there was a calamity (nazileh) in Herat; the western side of the mosque and most of the northern and southern sides were destroyed. A rather different version specifies that a strong shock, with a north-south motion, caused the collapse of many buildings in Herat, the masjid-i jami suffering heavy damage. The closeness of nazileh to zalzaleh (earthquake), and the apparent support of this reading in a variant text, confirms that an earthquake was responsible for the damage [Fahmi in Barbier 1860].

1364 Feb 19 On 6 Jumada I, 765 = 19 February 1364 a third destructive earthquake occurred in Herat [Hafiz-i Abru:xxxvii; Hafiz-i Abru, Manjmu:48; Fasih:iii.96]. Most of the buildings in the city were ruined, particularly the tall structures. The shock caused the battlements to fall from the ramparts and several meters fell from the top of the Falak al-Din minaret. The masjid-
in the city was again damaged; the main arch collapsed although its two supporting pillars remained intact.

The information about this earthquake suggest that the shock originated some distance from Herat possibly in the Gulran district, with damage in Herat caused by long-period ground movements.

It is important to note, that in spite of the prominence on Herat during the middle ages, no information regarding serious damage has been found in the voluminous source material.

Earthquakes were felt in Balkh (36.75N, 66.90E) and Bukhara (39.77N, 64.42E). Landslides in the mountains dammed streams to form a deep lake at a place which is not given [al-Umari: fol.153v]. It is not possible to assess the effects of the earthquake on the cities mentioned. Balkh and Bukhara were both brought under the authority of Shah Rukh this year, but there is no reference to the earthquake in any of the Persian and Timourid sources, so al-Umari's authority remains obscure. Damage to Balkh cannot have been serious or one would expect it to have been more widely described in historic materials.

The earthquake is comparable to the event of A.D. 819 in the extent of the area affected and the number of shocks experienced. The mention of mountains in this region suggest an epicentral region east of Bukhara [Melville 1978].

All that is known about this event is that in the year 831 aH = 1428, there was an earthquake in Taliqan, with shocks lasting 10 days, in which many people were killed [al-Umari: fol.159v]. Even the location can be questioned, since Taliqan of Qazvin or Talikan of Merv may have been shaken, both areas being almost equally seismically active. Earthquakes in Merv are more likely to have been recorded than those further west at this period, and as al-Umari's source may have been the same as for the 1410 event, a tentative location of this event in northern Afghanistan may be preferred [Melville 1978].

For this earthquake (3rd Safar 911 aH, or 6 July 1505) we have an eyewitness account. In Kabul (34.53N, 69.13E) the shocks ruined the ramparts of the fort, even the walls of gardens. Paghman (34.58N, 68.95E) was particularly badly affected, all houses there being destroyed and 70 or 80 people were killed, with numerous casualties in nearby towns and villages. Most of the houses in Tipa (Tibah, 34.68N, 69.01E)) were levelled with the ground.

Between Istarghach (Istarghij, 34.91N, 69.07E) and the plain (Maidan) for about 6 or 8 farsakhhs (31 to 42 km), in some places the ground rose as high as an elephant, in others, sank as deep. It is not clear from the text whether Maidan here refers to the plain or to the town of Maidan (shahr) which is at the southern end of the Paghman range, west southwest of Kabul. Villages and groves slipped from their place and many rising grounds were levelled and dust rose from the tops of the mountains. Between Paghman and Begtut, the valley just north of Paghman, there was a landslide, where water springs emerged to the surface. Thirty three aftershocks are reported on the day of the earthquake with two or three a day, for the next month.

A greatly abbreviated notice of this earthquake in Kabul is given also by al-Asafi, who puts the event in 912 aH (1506) and says that destruction was general among citadels (qal'at) and houses in which many people perished al-Asafi (p.934).

At the time of the earthquake, Babur was outside Kabul, preparing for his campaign against Kandahar; it took him about a month of hard work to repair the fort (Bala Hissar) at Kabul (Babur: fols. 157r-158r, pp.247-8). We have no information of the effects of the earthquake from other places and is not known how far the shock was felt. Babur's memoirs do
not mention any damage or repairs in other places through which he traveled during his campaign against Kandahar.

Baird-Smith (1843b) assumes that the effects of the shock extended hundreds of kilometres away to Kandahar, Ghazni and Jalalabad for which we could find no evidence, while other modern writers confuse the word 'qalat' mentioned by al-Asafi with the town of Qalat north-east of Kandahar. The available information clearly suggests that the earthquake was associated with at least 40 km long surface rupture of the Paghman fault, 20 km north-west of Kabul, which strikes N20°E. Much of the destruction was reported from Istargij, Tibeh to Paghman, localities which lie along the fault. Vertical offset on the fault appears to have been approximately 3 m. An unknown amount of strike-slip faulting may also have occurred.

Some authors have conflated this earthquake with the M>8.2 earthquake in Kumaon and Western Nepal a month later, that damaged monasteries in Tibet, and resulted in much damage in Agra and other northern Indian cities.

1519 Jan 3 There is little macroseismic information about this earthquake in north-east Afghanistan. It is mentioned in the sources that describe Babur's campaigns to Swat; they say that the earthquake occurred on Monday, 1st Muharram 925 (3 Jan. 1519) in the direction of the region adjoining Bajaur (c.34.9N, 71.4E), and that it lasted half an hour (sic); after the earthquake Babur conquered the citadel of Bajaur (Abu ’l-Fadl, al-Asafi, sub.ann.).

The region meant here should be along the middle course of the river Kunar, north-east of Jalalabad (34.43N, 70.45E) near Arandu (35.32-71.56). The survival of this notice in the sources suggests that the earthquake, which occurred in this sparsely populated and mountainous area, was a relatively large event.

Wilson (1930) commits a double error with this earthquake: he reads Bujnurd for Bajaur, places the event in Iran, and confuses this earthquake with that of Kabul in 1505. The quality of the data allows only an estimate of the general location of the event, which may have occurred on the Kunar fault, but it does not permit an accurate assessment of its presumably sizable magnitude.

1832 Jan 22 (7.4) This was a large earthquake with an apparent epicentral area in the district of Badakhshan in northeastern Afghanistan. It occurred at 11 pm local time on 22 January 1832, and together with its damaging aftershock of 21 February destroyed most of the villages in the district, allegedly killing thousands of people.

In Kalafgan (36.77-69.93) all forts and houses were destroyed and many lost their lives. In Jorm (36.84-70.7) 35 km east of Kalafgan, houses collapsed and 12 people out of 25 were killed. From a total population of 310 in three nearby villages 156 were killed. In the valley of Kowkcheh (36.60-70.85) the shock triggered numerous rockfalls and in the neighbouring valley of Varaduj (36.68-71.13) a fort and houses were destroyed, and a whole mountain-side fell into the valley damming the river for eight days before the dam was breached. In the Sargulam valley, 72 of a population of 155 perished.

The earthquake was felt strongly in Kabul (34.53-69.14), it caused some panic in Lahore (31.56-74.35) and it was reported from Srinagar (34.08N, 74.8E), Kokand (40.52-70.95) and Bukhara (39.78-64.43). (Burnes 1834 i.17.,ii.203; Masson 1844; Wood 1872; Journ. Asiatic.Soc. Bengal, vol.1, p.34, 146, 1832; Trans. Geol. Soc. London, vol.3, p.492)

The earthquake was felt over an area of 450 km radius, an indication which, on the authority of Musketof and Orloff (1893.242), Kondorskaya and Shebalin (1977.202) is interpreted as a subcrustal event of focal depth of 180 km, consistent with depths of recent
large events in the region. They assign to it an epicentral intensity of IX and a magnitude m_b of 7.4.

The earthquake was followed by a long series of aftershocks, one of which (21 Feb.) caused rockfalls that blocked valleys in Badakhshan, adding to the damage, a rather unusual characteristic of deep earthquakes.

1842 Feb 19 (7.5) This earthquake in north-east Afghanistan occurred during the first Afghan War on 19 February 1842. A famous account of the earthquake and its aftershocks is related by Lady Sale (Plate 1) who was held hostage with her colleagues during the several months following the earthquake (Sale, 1843). On 5 January British forces had surrendered Kabul and began their retreat to Jalalabad, 120 km west of Kabul, still garrisoned by the British who had hastily restored its dilapidated defences damaged by the earthquake. Much of what has been written about this earthquake is based on contemporary accounts and press reports (Eyre 1843; Gleig 1846; Sale 1846, Englishman, 1842) and on less useful, later works and earthquake catalogs (Stenz 1945).

The earthquake occurred at 11h 40m local time. At Jalalabad (34.43N, 70.45E) situated on the right bank of the Kabul river, ground movements were very strong; not a man could keep his legs; everyone was prostrated, and nausea affected all. The defences of Jalalabad itself, which had just been repaired, were seriously affected. A substantial length (2.4 km) of the newly built parapets were damaged without loss of life. Several breaches were made in the old adobe bastions and in the curtains in the Peshawar (east) face. The Kabul gate was reduced to a shapeless mass of ruins. However, in a matter of days the damage was repaired (Abbott 1879, IO 1843, Memoirs 1875).

Within the walls a third of the local houses were destroyed, the collapse of tall houses choked the streets leaving no room for escape. Some people were injured but few of the inhabitants were killed. In the British garrison only 4 men were killed, and many were injured, but none seriously. On the whole, loss of life was small, compared to the nature and extent of damage. A report written after the earthquake contains a complete set of sketches indicating the extent of damage to the walls of Jalalabad. (IO 1842; Heuckroth and Karim 1970). Outside of the walls, presumably along the river face, the ground opened in several places and water appeared on the surface. According to Baird-Smith (1842-1844), the waters of the Kabul river were twice thrown from their bed.

Plate 2 Lady Sale and companions in captivity drawn by Captain Eyre.
Lady Sale and her companions were forced to march from town to town during the 1842 aftershock sequence, numerous shocks of which were recorded by Lady Sale in her published diary (Sale 1843).

North of Jalalabad the shock caused considerable damage to settlements on a portion of the Suffrid Kuh range of mountains (Baird-Smith 1843b). In the regions of Laghan and Kunar, villages were ruined killing dozens of children and women. The large settlements of Chaharbag and Tigi in the Alingar valley suffered severely, scarcely a house being left standing, and several hundreds of people were killed (Eyre 1843).
Further to the north, damage was considerable in the fort of Budeeabad where several English prisoners (including Eyre and Lady Sale) were confined. The motion of the ground was so severe that people could only with difficulty maintain their balance. Walls, gateways and corner towers, were all much shaken, or thrown down. Almost all the houses in the fort were damaged and a few collapsed, but all hostages entirely escaped injury. Eyewitness accounts indicated that the fort of Budeeabad had suffered less than the other 40 forts in the valley. In one fort a tower fell, killing five people, others had not a wall remaining (Sale, 1843).

Along the valley from Budeeabad to Tigri, none of the forts escaped damage, with few inhabitable, and mostly masses of ruins (Eyre, 1843). In the Kunar valley, where the shock triggered landslides and rockfalls from the hills, the forts of Shewa and Pashat were totally destroyed (IO 1842).

Plate 3 Dr. Bryden, the surgeon from the British army in Kabul was the only person permitted to return, following the massacre of the British army in their retreat from Kabul to Jalalabad by the Afghans in 1842. The fort in Jalalabad (seen in the distance) was damaged during the 1842 earthquake and hastily repaired by the British after the earthquake. Painting in the National Gallery, London.

Outside this region, damage was far less severe but widespread. To the west, some parts of the fort of Tezeen is said to have been destroyed (Heuck & Karim 1970), while at Kabul the shock caused little more than general panic; the walls of the European ward, were badly shaken and came down a few days later (Baird-Smith 1843b). There is no evidence that Kabul and its fort needed any repairs after it was re-taken by the British forces on 15 Sep 1842 (IO 1842). Nor are there damage reports from Argandeh, Bala Maidan and Jalriz, west of Kabul, where the shock caused some concern, but details are lacking (Sale 1843).

Plate 4 First two panels of a fourteen segment panorama of the outer walls of Jalalabad Fort (From a view in the British Embassy, Kabul).

It appears that the effects of the earthquake extended more to the east of the Laghan-Kunar region. At the camp of Kawulsur, 13 km from Peshawar, the shock was violent. Many of the camels that were carrying the baggage of the troops were thrown down, people were obliged to support themselves, and many suffered severe nausea (Delhi Gazette).

According to press reports from Peshawar, the largest urban center east of the apparent epicentral region, the shock lasted intermittently for almost two minutes and destroyed one tenth of its adobe houses killing 40 to 50 people (Delhi Gazette; Memoirs 1875). There is some evidence that some small damage extended to Kalabagh, particularly in the part of the town on the right bank of the Indus, but it is not certain whether this was due to the earthquake, to the great flood of the Indus in 1842, or to both (Binnie personal communication).
Interestingly several reports have survived for this earthquake recorded at remote distances from the epicenter, implying that the magnitude of the earthquake was considerable. At Shalkur, in Little Tibet near Skardu, at an epicentral distance of 410 km, the shock was strong enough to be mentioned in official dispatches (Baird-Smith 1843a). Although we have no information about damage between Kalabagh and Ferozapore, at Ferozapore (560 km) the shock was widely felt and it was rather strong (Baird-Smith 1843a). At Ludiana (650 km) it lasted more than 90 seconds.

Eastward along the Himalayan front it was felt at Lansdour and Dehra (Baird-Smith 1843). At Simla (720 km) the earthquake was barely perceptible; however, it disturbed the records in the magnetic observatory (Mallet 1853; Baird-Smith 1843b; Boileau 1845). Mussoorie (820 km) was the most easterly limit of the earthquake where the shock was perceptible (Baird-Smith 1843b).

In the plains fronting the Himalaya the shock was barely felt but at Poojna and along the Doab Canal at Kulsea (860 km). There, the water in the canal was unusually muddy and was disturbed by a high swell (Baird-Smith 1843a). The shock was felt at Saharanpur (860 km) but attracted no particular attention (Baird-Smith 1843a). In Delhi (910 km) the shock was generally felt (Baird-Smith 1843b). About 30 km south-west of Delhi, at Sonub (930 km), the shock was not felt but allegedly was responsible for a change in the flow rate of a hot spring (Baird-Smith 1843b).

To the south and southeast of the epicenter the shock was felt slightly at Quetta (650 km) and it was scarcely felt in the Sind (1100 km).

Although it is not clear as to precisely where the epicentral area was located, from the evidence available some reasonable deductions can be made. We know that maximum damage occurred over a large area in the eastern Laghan and Kunar regions between Budeebad, Jalalabad and Pashtat, which could have well extended toward the north-east into an area from where we have no information. It is unlikely that the epicentral area extended to the south-east along the supply route of the British forces, and most certainly it did not extend much to the west; significant damage apparently did not extend to Tezeen and beyond Kabul.

These observations and the fact that all known aftershocks were reported from the Jalalabad-Budeebad region, very few from Peshawar to the eastward, and none to the westward (Baird-Smith 1843b) suggest that the location of the epicentral region must be sought in eastern Laghan in the Kunar district, possibly associated with oblique thrust faulting along the southern section of the Kunar fault system about 35.0N, 71.0E (Chmyrov et al. 1972).

Aftershocks continued to the beginning of the following year, most of them being strong to damaging chiefly in the region of Jalalabad (Baird-Smith, 1844). The large number of aftershocks and the prolonged duration of the aftershock sequence which extended for months, suggest a crustal event.

From the area within which the earthquake was felt we estimate the surface wave magnitude of this event to be $M_S \approx 7.5$.

1874 Oct 18 (7.0) Little is known about this earthquake which on 18 October 1874 caused serious damage in the region north of Kabul. According to local sources [Furon 1925a,b; Stenz 1945.3] it occurred on an afternoon during Ramadan about the middle of Sher Ali Khan's reign. This is consistent with the date of an earthquake in Kabul on 18 October 1874 reported in the press [The Times 1.12.1874 p.5].

The densely populated region of Kohestan (35.12N, 69.30E) and the nearby villages of Golbaha (35.14N, 69.30E) and Jabal Saraj (35.13N, 69.24E), 70 km north of Kabul, were
almost totally destroyed with many casualties. The ground opened up, presumably due to liquefaction, in the vicinity of Jabal Saraj.

Press reports say that in Kabul (34.53N, 69.13E) more than 1000 houses were destroyed and many people were killed [Fuchs 1886.485]. However no corroborating evidence has been found to support this, and this statement may refer to the losses sustained in the Kohestan.

Press reports add that the shock was felt at Sekunderabad (32.42N, 65.05E) [Times of India:7-11-76] and Kandahar (31.61N, 65.70E) [Ballore 1905.207] about 490 km south of Kohestan. However, it is not clear which of the many Sekunderabads in Afghanistan and India is meant here. The shock was perceptible 530 km north of Kohestan, in Samarqand (39.66N, 66.95E) at 13h 30m lasting for 1-2 min [Musketof and Orloff, 1893.460]. We can find no mention in consular despatches from Mashhad of an earthquake having been felt in the city [FO.Persia.60.361.1874].

The earthquake occurred near the north terminus of the Pagham fault, from where ground deformation was reported. Its magnitude may be assessed roughly from the area of perceptibility, which suggests $M_S \approx 7.0$.

![Plate 5 Three views of the Khojak tunnel before the 1892 earthquake. The tesselated portal was damaged by the earthquake.](image)

1892 Dec 20 M=6.5 (Chaman) The event occurred about 90 km north-west of Quetta, near the Pakistan - Afghanistan border. Aftershocks continued to be felt until the end of February 1893.

Old Chaman, the only large settlement and the head of the North-Western Railway line, which was at the time under construction, was almost totally destroyed without loss of life. The stations of Sanzal and Shalabagh, situated on either side of the 3.8 km long Khojak tunnel and about 5 and 8 km from Old Chaman, were damaged. However, no locomotives and carriages at these places were overturned or derailed by the shock, and no water supply tanks along the track were destroyed. The tunnel itself was undamaged but workmen engaged on the roofing were thrown from their scaffolds and the upper crenulations of the tunnel's block-house were cracked. At Shalabagh and its vicinity the shock was strong enough to throw down several local houses, making many of them unsafe.

Spin Baldak, a small fortified station in Afghanistan, about 20 km north-west of Chaman, was probably damaged. The country to the East of Old Chaman was very sparsely inhabited, and hence the limits of the damage area must probably remain unknown. After the earthquake Chaman was relocated to its present position about 10 km further to the north-west of its old site.

The shock was not felt over great distances; it was rather strong at Quetta, 90 km to the south-east, and probably it was also felt at Kandahar in Afghanistan, 115 km north-west of Old
Chaman. We could find no evidence that the shock was felt along the Shalabagh section of the North-Western Railway, at Sibi, Jacobabad and Sukkur.

The earthquake was associated with surface faulting, with Old Chaman located directly on the active trace of the Chaman Fault. At a place outside of the Khojak tunnel, near the Chaman end, where the line emerges on the plain of Kandahar, the fault break crossed the railway track at 25° and followed the Khojak Range (NNE-SSW), about 4.8 km to the west of the southward continuation of the railway line. Where they crossed the fault, both the tracks together with their sleepers, were buckled in the same manner, suggesting an oblique thrust with 60-75 cm left-lateral left lateral motion combined with 20 to 30 cm downthrow of the west block (Griesbach 1893, Davison 1983). From the length of the rail removed and from the obliquity of the fault trace, Griesbach (1893) estimated 75 cm of left-lateral slip, although from the numerical shortening of the rails and the obliquity in the photograph it is possible to derive a fault slip of just over 80 cm. The two nearest bench marks on either side of the fault-break were checked by Egerton (1893), the location of which are not given, show a difference of 4.3 m more than before the earthquake, indicating that either the western side was downthrown, or the eastern side was raised, but it is not stated which side is relatively the higher. Conflicting with this observation, Davison points out that a revision of these levels shows the actual difference was not more than 5 cm (Davison 1993).

Egerton traced the fault-break for several miles in both directions from its crossing with the railway lines, but it was not possible to trace the break to its end in either direction. To the north it passed from British territory into Afghanistan, and to the south it was lost in the snow of the Khowaja Amran peak, a distance which measured on the map that accompanies his paper, is approximately 16 km (Egerton 1893). However, Griesbach states that the fault-break was 32 km long, with displacement continuing out of sight to both north and south (Griesbach 1893). He does not indicate on what he based this estimate.

Attempts in recent years to identify in the field the 1892 rupture are inconclusive. The fault in Afghanistan north of Chaman, mapped in the early 1970s by Denikaev and Kafarski (1973), is shown on copies of the geological map of eastern Afghanistan. These authors could find no evidence that this segment of the fault was activated in 1892 nor in the recent past. An minimum surface rupture length of 60 km is inferred by Lawrence et al (1992). This they deduced from a single very young scarp of low relief and great continuity, which includes Egerton's reported rupture.

Plate 6 Contraction of the railway line where it crossed the 1892 Chaman fault (from Griesbach 1893). Sinistral fault slip is estimated here to have exceeded 70 cm.

This is the earliest event for which we have scant, but reasonably good instrumental data. We used Abe's (1994) method to calculate its magnitude from trace amplitudes recorded by undamped instruments other than Milne recorders. i.e. by Rebeur-Paschwitz undamped seismographs at Nikolaiev and, Strasbourg (Rebeur-Paschwitz 1893, 1895). Using Abe's method we calculate a magnitude of 6.7, which is considerably larger than the value of 6.2 assessed by Abe for this earthquake.
Although not confirmed by contemporary corroborating evidence, the following estimates of rupture parameters are available: Montessus De Ballore (1906) L= 20 km H=80 cm, V=20-30cm; Montessus de Ballore (1924) L= 24 km H=60-75 cm; Quittmeyer and Jacob (1979) L>30 km H=75 cm; Lawrence et al (1992) and Yeats et al (1997) L= 60 km H=60-75 cm, V=20-30 cm. As a check on the instrumental estimate of magnitude we calculated Ms using the empirical formula of Ambraseys and Jackson (1998), using the maximum length (60 km) and slip (75 cm) inferred for this event. The derived value of Ms 6.8 is the close to the instrumental value. This magnitude is smaller than earlier estimates by previous investigators but is consistent with relatively small area from which the shock was reported felt (Ambraseys and Bilham, 2003b).

1893 Feb 13 M=5.9 (Chaman) This earthquake caused some concern at Chaman but no damage. In Quetta it was much stronger than the shock of 20 December 1892 which implies that this was not an aftershock but a separate event not far from the town. It may be the shock which is said to have caused damage at Pishin and Baghihindu sometime in early 1893, NT(47.470; 48.348-349). The earthquake was recorded at Strasbourg (Rebeur-Paschwitz 1893, 1895) and if it be assumed that it occurred somewhere near Quetta, its magnitude should be about 5.9.

1899 Dec 31 An earthquake in Kabul on 31 December 1899 at about 10 pm, brought down many adobe houses and several people were killed. It was apparently preceded by foreshocks in October and November. (Martin 1907)

1906 Oct 24 (7.1) This was a large, globally-recorded earthquake with an epicenter somewhere on the border of Uzbekistan with Afghanistan. The shock was felt with low intensities within a radius of about 380 km: at Tsardzhui, Bukhara, Katta Kurgan, Samarkand, Tashkent, Khodzento (Leninabad 40.29N, 69.63E), Khorog, Kelif, Kerki, as far as Ufra (40.02N, 53.04E) but it was only at Aivadz (36.95°N-68.95°E) and Termez (37.22N, 67.27E) that the shock was strong enough to cause damage. We could find no macroseismic information from Afghanistan.

Macroseismic information is insufficient to define an epicentral area; instrumental data merely confirm a general location in the region north of Termex. (Seismische Monatsber. Physikal. Observ. Tiflis, 1906, p.9, Tbilisi); Gubin (1960), Levitski (1908); Mitskevich (1937); Spesivcheva (1933), Izvest. Post. Tsentr. Seism. Komis., vol.3, no2

1907 Oct 23 (6.1) Little is known about the effects of this earthquake in the region of Kerki in Turkmenistan, except that it caused some damage at Kizil Ayak on the Amu Darya. This event occurred on the time of an earthquake in Sicily and instrumental readings are confused. (Schau & Lais, 1912)

1908 Jul 26 (5.3) An earthquake in north-west Afghanistan caused damage to a few villages in the Injil area (34.6N 61.5E) north-east of Herat, but details are lacking. The shock was strong at Herat, at nearby Karizak and everywhere in the Herat valley, where it is said to have lasted for one minute. The shock was felt at Torbat-i Jam but there is no evidence that it was felt in Mashhad, 320 km north-west of Herat. [PRO.FO.Mashad 248/939(01.08, 15.08, 01.09.1908); Patterson (1908)].

1909 Jul 7 (7.5) This earthquake, probably consisting of two events, one shallow and the other deep, was widely recorded one minute apart by the global seismographic network of the time. The solution by Gutenberg gives a rough location (±3°) at 36.5°N, 70.5°E, which places a single event somewhere in Badakhshan in north-eastern Afghanistan, at a focal depth of 230±30 km, to which Gutenberg assigns M = 7.1(±0.5) and mb = 7.6 (±0.4) (Gutenberg, 1947, a location and depth which were adopted by later authors who assign to the earthquake a larger
magnitude of 8.0, presumably by adding to 7.1 a depth correction (Duda, 1965; Kondorskaya and Shebalin, 1997).

Until recently, published macroseismic information exclusively derived from Russian territory north of the Amu Darya river, favors an deep location, not only because of the large area over which the earthquake was felt, but also because, in spite of its large magnitude, the shock did not cause damage anywhere in the territory. Along the alluvial valley of the Amu Darya river a few local houses suffered minor damage in Patta Kesran (37.1, 67.2), Aivadj (36.98, 68.03) and Sarai Kamar (near Kirovabad 37.24, 69.09) but not in near-by Termez (37.2, 67.3) where the shock was rather strong but caused no damage. To the north of these places the earthquake was felt chiefly in alluvial valleys (Khorog (37.49, 71.55), Samarkand (39.66, 66.95), Khodzent (40.29, 69.63), and Kokand (40.53, 70.93)), which at great epicentral distances tend to enhance ground motions in large earthquakes. It was perceptible at Kerkí (37.83, 65.20), Katta Kurgan (39.90, 66.25), Chust (41.00, 71.23) Andijan (40.79, 72.34) and Murgab (38.17, 73.95).

This information has lead to a macroseismic location near the large urban settlement of Aivadj on the Amu Darya, after which the Russian catalog names the event and assigns to it a magnitude M_b of 7.7, and a radius of perceptibility of 700 km (Kondorskaya and Shebalin 1997). However, unpublished reports of the Political Agents in India, Iran and the Hindu Kush, as well as the Indian press show that damage was serious south of the Amu Darya in Badakhshan (37.6, 70.8), in Afghanistan and in the region of the North-west Frontier. Maximum effects were reported along the Kunar valley, from Asmar (35.03, 71.36), Aradu (35.32, 71.31), Drosh (35.55, 71.80) as far north as Chitral (36.02, 71.75), and from the levy posts between these places.

Unspecified damage, probably due to landslides and rockfalls, was also reported from Alpurai (34.90, 72.65), Karori (34.88, 72.76) and Besham (34.93, 72.87). The Lady Minto hospital in Swat (34.90, 72.49) was damaged and in villages between this place and Dir (35.20, 71.88) houses collapsed without fatalities.

In the Northwest Frontier Province rockfalls destroyed levy posts, disrupted telephone lines and blocked many passes into Badakhshan where summer camps were destroyed. We have no information from Jalalabad in Afghanistan, but in Kabul (34.53, 69.14), several houses collapsed and about 10 persons were killed, in addition to many cattle.

We have no details from Khost (33.3, 69.9) and Waziristan (32.9, 70.6) south of Jalalabad, except that the shock was felt in these regions. Because of hostilities access to these regions was restricted. Some houses were damaged in Kohat (33.60, 71.44) to the south, and in Gilgit to the NE (35.92, 74.29). To the west, in Lahore (31.56, 74.35) the shock was strong enough to awake people and cause some panic. The earthquake was felt strongly at Mussoorie (30.45, 78.08), it was reported from Srinagar (34.08, 74.81), and it was barely perceptible in Tashkent (41.31, 69.29).

The earthquake was followed by many aftershocks which were reported from the upper Kunar region, the largest of which on 7 September caused some additional damage in Swat.

We interpret this sequence to have been a double event consisting of a shallow earthquake that caused damage and aftershocks in the Kunar area, followed by a deep earthquake centered further west. Instrumental readings are too few and too inconsistent to attempt a revised instrumental location but the data suggest two consecutive shocks each of $M_S=7.5$, separated by an interval of little more than one minute. The second event appears to have occurred west of the first and its focal depth may have been subcrustal. [IO.L.P/S.7.230.1102,1114,1146]
1911 Jan 1 (7.1) This was a relatively large earthquake in northern Afghanistan, followed four hours later by an aftershock of $M_s = 6.5$. Macroseismic information is sparse, some of which is confused with the effects of the large ($M_s = 8.3$) Kebin earthquake two days later.

Maximum damage in the January earthquake sequence occurred between Feyzabad (37.12N, 70.56E), Khnabad (36.68N, 69.11E) and Kalan (35.19N, 69.23E). In the region of Kalan 60 houses collapsed killing 240 people; in Khanabad 70 houses were destroyed and two people were killed, while in the region of Feyzabad houses, the number of which is not given, were ruined with fatalities. Damage extended to the region of Kabul (34.53N, 69.13), where about 300 houses collapsed killing 460 people.

The shock was rather strong at Shuburghana (36.67N, 65.74E), Termiz (37.22N, 67.28E) and Mazar-I Sharif (36.70N, 67.10), and less so at Kerki (37.82N, 65.20E) and Peshawar (34.01N, 71.54E). At Takhtebazar (35.96N, 62.91E) lamps were set swinging and plaster fell off ceilings. At nearby Kushka (35.31N, 62.41E) the earthquake was hardly felt but it was noticed because of the swinging of lamps. The shock was generally noticed in Bukhara (39.77N, 64.42E) and Kattakurgan (39.90N, 66.25E), but it was hardly perceptible in Tashkent (41.31N, 69.30), Samarqand (39.66N, 66.96E) and Kushka. [Zakaspiskoe Obozrenie:21-23.12.10; Turkestanskie Vedomosti:21.12.10; Shpil’kov 1914; Gorshkov 1941]. The India Office consular correspondence gives no evidence the shock to have been felt at Herat (34.14N, 62.17E) or at Mashhad (36.16N, 59.51E). It is impotent to point out that far-field information comes chiefly from sites on alluvial basins that could have enhanced ground motions at large distances.

The epicentral area of the earthquake that can be assessed from macroseismic information, therefore, must be sought near 36.0N, 70.0E, but it is not clear whether it belongs to the first or to the second shock. The main shock and its largest aftershock were widely recorded instrumentally. An early crude instrumental location places the main shock in the Altai (43.4N, 74.0E) which is 880 km to the NE of the macroseismic epicenter [Nikiforov 1912], while later relocations bring it closer to the adopted epicenter, i.e. to 38.0N, 66.0E given by Gutenberg and Richter (1965), and 36.5N, 66.5E by Kondorskaya and Shebalin (1997).

Instrumental data are sufficient to allow calculation of the surface-wave magnitude of the main shock from 29 stations using the Prague formula, which gives $M_b = 7.1(+0.3)$, compared to $m_b = 7.2$ in Gutenberg and Richter. For the foreshock at 14h 59m, from seven stations we find $M_b = 6.5(+0.2)$. In these calculations we have assumed normal depth.

Regarding the depth of these events, Gutenberg and Richter estimate 50 km for the main shock and 20 km for the foreshock. The pattern of intensity distribution does suggest somewhat greater depth than normal for the main shock, but the small difference between body and surface magnitudes does not. We have no means that could help decide on the actual depth.

1913 Sep 9 (5.0) A strong earthquake at Ayvadz (36.98, 68.03) on 9 September 1913 cause the collapsed of adobe and the damage of stone masonry houses. The shock caused liquefaction of the ground in the Shaartuz area (37.27, 68.13) [Gorshkov 1941]. See Plate XX
18 Nov 29 (6.2) A violent earthquake took place in Afghanistan, between Kalat-i Ghilzai (32.11N, 66.90E) and Ghazni (33.56N, 68.42E) causing many deaths due to the collapse of houses. It is also said to have increased the flow of water in springs and qanats, and that even some dry qanats begun to yield water [IO L/P&S Baluchistan/10/814]. The shock was strong at Jabal Saraj (35.13N, 69.24E) where some walls were thrown down [Heuckroth and Karim 1970].

1931 Sep 10 (5.0) In 1855 a group of nine 36-45 m high minarets existed in the complex of the musalla of Gauhar Shad in Herat (34.34, 62.19), two of which collapsed in the earthquake of 10 September 1931. The earthquake shock was felt at Murgab (37.49, 61.98) [Gorshkov 1941; Byron 1937:99; Blunt 1957].

1933 Oct 16 (5.6) A damaging earthquake on 16 October 1933 caused the collapse of three forts in the Oruzgan (32.93, 66.63) region. Slides and rockfalls were reported from this area and from Day Chupan (32.63, 66.77) where the shock caused great concern. [Heuckroth and Karim 1970]

1934 Mar 30 A damaging earthquake on 30 March 1934 in the hills south of Maimana (35.92, 64.78). The villages of Pashtunb Kote (35.90, 64.78), Bato (35.72, 64.80) and Purkhisht (35.72, 64.87) were totally destroyed, and people fled the region and took refuge in the hills. The shock triggered slides and caused cracks in the ground. There is no evidence that damage
extended to Maimana. Aftershocks continued for 10 days. No teleseismic data have been found for this event [Furon (1951); Huckriede, (date); Kursten et al (1962); Stenz (1945)].

1935 Jul 5 This earthquake occurred on the borders of Afghanistan and Uzbekistan and affected the region on both sides of the Amu Darya river. Information is too poor to allow location of its epicentral region which must be sought between Baisun and Shirabad in Tadzhikistan where some damage was done to unnamed localities, and to the irrigation system of Talishkan and Tazhdiuli.

The shock was strongly felt to the south at Shibarghan in Afghanistan at Sari-i Pul, Aq Chah, Balkh (Wazirabad), Mazar-i Sharif and Tashkurgan, where it caused insignificant damage. The earthquake was reported from a large area disproportionate for its magnitude. For example it is alledged that it was perceptible at Srinagar, at an epicentral distance of more than 700 km. (India Weather Review for 1935, Simla); Gorshkov DATE, Spesivtsev et al. (1941); Heuckroth & Karim (1970).

1935 May 30 M=7.7 (Quetta) This earthquake occurred ≈100 km outside the borders of Afghanistan but is largest in the catalogue and is therefore included in this account (Ambraseys and Bilham 2003b). Although Baluchistan in 1935 had one of the lowest population densities on the subcontinent of India, it occurred where most of the population lived. For this reason, and despite the initiation of earthquake resistant design triggered by the nearby 1931 sequence, the 1935 Quetta earthquake resulted in the largest number of fatalities of any earthquake on the Indian plate or its boundaries in the past two centuries.

Quetta was ceded to the British in 1877. Before then Quetta was a station which controlled the trade route from India to Kandahar, as well as the Bolan Pass to the south, and the road to Kalat and to Persian Baluchistan. Although a sketch of the fort at this time looks quite imposing an 1839 report describes Quetta as "a most miserable mud town with a small castle on a mound having one small gun on a rickety carriage " (Spate, 1954). Photographs of the town just before, and after, the 1935 earthquake reveal a busy frontier town that was severely damaged by the event.

Detailed information survives for the Quetta earthquake, (Situation Reports 31.05-13.08.1935, Files no. 1 to 73 in the Archives of the Government of India Bureau in Simla), as well as from West (1936), Jackson (1960), Skrine (1936), and Piney (1938). Most of the damage to rural and urban houses, chiefly of mud brick construction, was enclosed within a narrow zone, with Baleli and Quetta in the north extending in a south-westerly direction into the Harboi Hills, about 160 km long and 25 km broad. A great deal of the land in the zone is unproductive, and an even larger villages where water could be found in underground irrigation and water supply conduits (qariz, qanat). In addition to the towns of Quetta and Mastung at least 100 villages in Quetta subdivision and Kalat State were totally destroyed.

Starting from the north, Baleli was totally destroyed, 108 people were killed and 23 were injured. At Kuchlagh all houses were ruined and the railway depot collapsed with the loss of 8 lives and 9 injured. Further south, Sheik Manda was razed to the ground and in near-by Nauissar 77 people were killed and 28 injured.

Quetta, a military garrison town, with a population of about 40,000 (summer population 65,000), is built on a slope crossed by two nullahs (watercourses). The Habib Nullah separated the Civil Lines and town from the Cantonment, and the Durani Nullah, a kilometre further north, ran parallel to it for most of its length. Both nullahs were crossed by bridges at several points. The Civil Lines was the more densely populated part of the town. It occupied an area of about 4 square kilometres and it was located south of Habib Nullah, an area with a high water
table in the spring. This low lying part of Quetta was utterly destroyed, and about 15,000 people lost their lives (Pinhey, 1938). The Police Lines, the Durbar Hall, the Civil and Mission Hospitals, and the Club were ruined and the Residency was damaged. The only buildings that survived the earthquake with minor damage were the few reinforced concrete structures and the new railway quarters, constructed since the 1931 earthquake using earthquake-resistant principles, and situated in the most damaged part of the Civil Station.

North of the Habib Nulla, on higher ground, the cantonment was much less affected and only a few houses collapsed. The Garrison church and the British and Indian Military hospitals were undamaged. The only serious damage done to the cantonments was a belt about 1 km wide immediately adjoining the Durani watercourse and the Civil Lines, damage decreasing rapidly towards the north-east. Here a good deal of damage was done to the Fort and some of its buildings collapsed.

The airfield, with its modern hangars and barrack blocks, stood to the north-west, apart from the city and cantonment. In the RAF lines the hangars were left standing but little else. Every aircraft was so damaged that it was unsafe to fly. The earthquake caused no serious damage to the piped water supply nor to the power stations which continued to work on restricted load.

South of Quetta, Kansi was totally destroyed; 1,010 people were killed and 370 were injured. Also Sariab was razed to the ground with the loss of 1,206 lives and 641 people injured. At Durani 101 people were killed and 114 were injured. At Spezand, Dingar and Mand-i Haji local houses were flattened but the railway station at Spezand was not destroyed. Tiri was utterly destroyed with the loss of 710 lives and 275 people injured. Mastung, 65 km south of Kuchlagh, was flattened by the shock together with the Khan's palace, killing altogether 1,736 people and injuring 716.

South-west of Mastung, small settlements in the Shirinab valley which extends from Kuhnak to Manguchar, along a distance of 90 km by road, were destroyed. This region was within the thinly populated tribal territory belonging to the Khan of Kalat, and damage details are lacking. Pringabad, the only large settlement in this region was destroyed; 369 people were killed and 234 were injured. Manguchar, 100 km south of Kuchlagh, was also destroyed; 185 people were killed and 185 were injured.

Destruction extended south into the State of Kalat, 155 km from Kuchlag. Kalat itself was ruined with 120 people killed and 50 injured. In Kalat State, out of a population of 10,000, 2,900 were killed and 5,000 injured. It was estimated that all villages between Quetta and Kalat were destroyed with 70% of population either dead or injured.

Outside the epicentral region damage was widespread to dilapidated rural houses, particularly in many places in the Indus valley and in the Spin Baldak (Qla-i Jadid) and the Kandahar regions of Afghanistan (Stenz, 1945).

Liquefaction of the ground and mud volcanoes were reported in the valley north-west of Quetta. Some 20 km south of Kalat on the main road to Surab, about 5 km east off the road near the village of Thok (28.333°N, 66.517°E), large quantities of liquid mud were observed coming out from the top of an old mud volcano at the time of the earthquake, the eruption lasting for nine hours. None of the local inhabitants could recall any similar event in the past. The new flows had spread out beyond the limits of the old occupying an area of radius 140m.

Official figures for the loss of life in the earthquake are no more than estimates (Pinhey, 1935). In Quetta about 26,000 people were killed, of which a few thousand bodies were left buried in the ruins of the town. Outside Quetta numbers are even more uncertain, particularly
in the Kalat tribal area, and where more than the 8,410 deaths recorded. Altogether, the earthquake could have killed about 35,000 people, but reliable figures are lacking.

The telegraph lines from Kalat and Quetta to Chaman and Jacobabad were broken, but communication with the Government of India at Simla was established by radio. The railway and road communications, including the section through the Bolan Pass were not badly damaged. Several small road bridges suffered slumping of their abutments and five segments of the Quetta - Nushki rail track had to be replaced at its crossing with the zone of ground fissures (Thomson, 1936).

Administration became difficult owing to the fact that nearly all the subordinate civil officers and police had been killed. However, the fact that the troops escaped with few casualties allowed a quick rescue and evacuation of survivors, the disposing of thousands of dead by burial or by burning, sealing the town to prevent looting and the outbreak of epidemic disease, protecting and salvaging of property, and controlling the rehabilitation of the region. Two battalions of the 7th Gurka Rifles who were posted in Zhob and Chaman respectively at the time of the earthquake felt the earthquake and returned to find their regimental institute damaged beyond repair (Mackey, 1962).

Following the earthquake new laws were enacted for regulation of the distribution to relatives of property salvaged in the earthquake, for settlement of property claims and for the compulsory application of earthquake resistant design for all new public buildings and engineering structures, (Robertson 1948, and Khan 1956). Priority was given to the repair and reconstruction of destroyed qanats (underground irrigation channels) throughout the affected area to secure the next harvest.

Contrary to what has been said by a number of authors, that the shock was felt within a radius of only 280 km, Urdu and Hindi press reports confirm that the shock was felt over a large area, as far as Amritsar, Sultanpur and Simla to the east (1,000 km), to Jatti (610 km) on the mouth of the Indus to the south, Dera Ismail Khan (500 km) to the north, and Chagai (250 km) to the east, in the last two directions information is lacking beyond these points into Afghanistan.

The earthquake was followed by a long sequence of relatively small magnitude earthquakes, the largest of which in the south part of the epicentral area did not exceed a magnitude Ms 6.0. Shocks continued to be felt until the beginning of October. No shocks were reported before the earthquake, but a bright orange glow was seen over Quetta to the west, and further south, near Kalat, flashes of light were reported along the flanks of the mountains on both sides of the valley.

Following the earthquake a survey of the north-west dipping thrust faults south-west of Quetta, which runs for a few kilometres to the south-west along the northern flanks of Chiltan, showed no signs of any movement, although 20 cm of uplift was detected on bed-rock benchmarks near the Quetta brewery that lies 5 km west of the town on the hanging wall of the fault. Ground deformations which extended discontinuously for about 105 km were followed the south side of the Chiltan Range toward Kalat, striking N15E. Over the greater part of this distance they took the form of strands of open cracks, 2 to 20 cm wide, mostly in alluvium. About 8 km west of Mastung the ground of the west side of these cracks was downthrown on average by about 80 cm, though a little further south the sense of vertical movement was reversed. In some places, instead of a throw or open cracks, the ground had been heaved up, the uplifted portion being 30 cm or more high and several metres wide.
Where the locus of ground deformation crossed the railway that runs from Spezand to Nushki, about 3 km west of Mastung Road Station, the track had been uplifted and the rails buckled. Where bedrock intervened along these zones of fissures in alluvium, the cracks died out, with rockfalls and shattered rock taking the place of fissuring along the same line. This was well seen to the north-west of Mastung Road, on the southern flanks of the Chiltan Range. The zone of fissures extended further south, past Kalat. A few kilometres of SW of the village, ground cracks passed beneath an adobe house, displacing its walls but leaving them standing.

It appears, therefore, that the earthquake was associated with the zone of faults that lie along the east edge of the Chiltan range and that this zone extends to the south passing near the towns of Mastung and Kalat. Leveling data confirm abrupt uplift of the foot of the range but triangulation data that would reveal extent and sense of strike-slip motion have yet to be released. The first-order North Baluchistan Series of the Survey of India measured in 1909 (Burrard, 1912), passes southward through Quetta and along the Chiltan range. Remeasurements of some of these stations were in progress during the earthquake.

Our instrumental position, a relocation using p-waves from 231 stations and present ISC location procedures, is 160 km south of Quetta, about 40 km west of Kalat and close to the location computed by Engdahl et al. (1998) and Ramanathan & Mukherji (1938). The formal errors are about 15 km, but as most of the stations are grouped to the north-west. the true position could be further to the north-west. The surface wave magnitude calculated from 25 station magnitudes is 7.7, to which corresponds a seismic moment of 17.0×10^{27} dyne cm, estimated by Singh and Gupta (1980).

Lawrence et al. (1992) and Yeats et al (1997) associate these ruptures with the Ghazaband fault zone, one of a series of large north-south left-lateral strike-slip systems that accommodate plate boundary shear. A temporary seismic network operated in the region in 1978 suggests that microseismicity was at that time concentrated near the ends of the 1935 rupture (Armbuster et al., 1980). Fault plane solutions in the area confirm left-lateral faulting on this trend, and, in spite of the lack of reported observations of strike-slip offsets at the time, this is the most likely mechanism for the 1935 earthquake.

1948 Jan 28 (6.5) A damaging earthquake occurred in the region of Balkh in northern Afghanistan, over a large area between Shah Anjir (36.34, 67.22) and Mazari Sharif (36.70, 67.11). Much damage occurred near the Dulan Pass, at Shah Injir, Yakatal and Quduk Mulla, where a number of people and domestic animals were killed. At Mazari Sharif (36.70, 67.11), 45 km from the pass, old houses and shops were destroyed and the dome and towers of the shrine building fell down. At Samangan, 90 km away, a few houses were ruined and the sugar storage building was destroyed. The shock was strong at Maimana (35.92, 64.76) but it did not cause significant damage. The earthquake was widely felt, as far as Kabul (34.53, 69.12), Dushanbe (38.57, 68.77) and Samarkand (370 km), but not at Herat (Ittilaat 13.11.1326); Heuckroth & Karim (1970).

1950 Sep 24 (5.6) An earthquake on 24 September 1950 with an instrumental location on the Iran-Afghanistan border, just south of Taiabad. There are no macroseismic data for this event except for the unconfirmed information that about this time a shock caused the collapse of a 16th century minaret in the Musalla of Gawrshad in Herat, 130 km away, already in ruins, leaving seven minarets leaning in different directions (Byron 1937:99; Dupree 1971; Blunt 1957).
1952 An earthquake at noon on a day at the end of autumn probably in 1952, occurred in the Schkurigal-Bashgal region, at Ozzuk (35.80, 71.27), App sigh (35.80, 71.25), and the upper Bashgal basin and Deywanababa (35.90, 71.30), but not in Lulook (35.77, 71.22), where damage was caused by falling rocks. Cracks in the ground and in snowfields were reported from Deywanababa and Barge Matal (35.67, 71.33). In the Munjam valley (36.02, 70.76) the shock was strong but it did not destroy any houses, even though falling rocks were numerous [Danby et al. 1972].

1955 Aug 29 This was one of the many shocks that preceded and followed the August 29th event over a period of one month, ruining many houses at Gulran in north-west Afghanistan. The shock was felt strongly 100 km away, across the border in Iran, at Torbat Sheykh Jam, where it caused no damage. No association of this event can be made with the shocks recorded by the Soviet and Indian networks during the period 28 to 30 August (Bozorgnian, 1962; Heuckroth & Karim, 1970).

1956 June 9 (7.4) A large magnitude earthquake occurred in the Bamian district, Afghanistan. Much of the destruction was in the valley between the Kahmand and the Saighan mountains, a sparsely populated region with no large villages, at an altitude over 3000 m. Little is known about damage to individual settlements, except that the few small mountain villages around Kahmand (35.33N, 67.50E) and Saighan (35.17N, 67.70E) were totally destroyed, and those in the district of Yakwalang (34.73N, 66.97E) were heavily damaged with loss of life. Contrary to information in the press the earthquake caused surprisingly little loss of life, fewer than 70 people.

The epicentral region may be defined roughly within an area about 120 km long and 40 km wide, running from Yakwalang in the south to Kahmand and Doab (35.55N, 67.81E) in the north-east. Within this zone the earthquake triggered rockfalls and landslides which were one of the causes of additional destruction. The largest slide occurred at Kami Kharqushaq (35.36N, 67.53E), about 15 km north-west of the village of Kahmand. An estimated 100,000 cubic metres of limestones and marls slid down damming the upper valley of the Kamar river, holding back eight million cubic metres of water for four days. The dam gave way on 14 June, and the flood swept away the settlements in the valley, drowning about 350 people, leaving behind a small lake that marks the site of the slide. Another large landslide at Darra-i Shikari (34.88N, 67.78E), about 25 km north-east of Bamian (34.82N, 67.53E), blocked roads and disrupted communications, killing a number of domestic animals. Also at Yakwalang, slides blocked roads and killed herds of animals.

Outside this region, around Pul-I Khuni (35.95N, 68.71E), Baghlan (36.14N, 68.70E), Kunduz (36.73N, 68.86E), Seh Kundi (33.35N, 68.40E) and Kabul (34.53N, 69.13E) the shock caused some damage, great panic, but no loss of life.

The earthquake was felt as far as Termez (37.22N, 67.27E), Motovabad (37.34N, 68.67E) and Chitral (36.02N, 71.75E) and it was perceptible at Stalinabad (38.57N, 68.78E) but not in Peshawar [Wesson (1972), Furrer (1956); Heuckroth & Karim (1970)].

1956 Sep 16 (6.7) A damaging earthquake occurred in the Lohgar district (33.98N, 68.99E) in north-east Afghanistan, near the border with Pakistan. Little is known in detail about the damage in the epicentral area which includes the villages of Said Karani (33.68N, 69.37E), Laza and Jaji (33.78N, 69.67E) where a number of houses collapsed and a few people were killed. In the Hindu Kush the earthquake caused landslides and snow-avalanches depending on local conditions. Some villages suffered slight damage while others suffered none. Deywanababa (35.90N, 71.30E) was outstanding in being the scene of an avalanche that killed a few people.
The shock triggered rockfalls from the Mangal mountain that killed a number of animals. Also in Nuristan, the shock caused snow-avalanches from area above the snow-line.

The earthquake was felt over in Afghanistan and Pakistan in an area disproportionately large for its magnitude. Felt reports are available from the districts of Hazarajat, Parwan (35.1N, 69.2E), Ghazni (33.63N, 68.95E), Kohat (33.59N, 71.44E), Parachinar (33.90N, 70.10E), Behsud (34.38N, 67.53E), Rawalpindi (33.69N, 73.04E) and Srinagar (34.08N, 74.81E), within a radius of over 300 km.

A large aftershock on 16 September was felt in the Lohgar district, in Kabul, in the region of Jalalabad and across the border at Parachinar. [Wesson (1972); Danby et al. (1972); Seism. Bull. Sep. 1956, p.5,10, Met. Dept. India, Delhi; Heuckroth & Karim (1970).

1962 Sep 12 (6.0) An earthquake in the Thakar province of north-east Afghaistan. The available macroseismic information is insufficient to define an epicentral region. In Afghanistan the shock was strong in the districts of Baghlan and Qazghan and it was felt up to 250 km away at Jalalabad, Kabul and Mazar-i Sherif. In the north, in Tadjikistan and Uzbekistan, the shock was equally strong at Karshi, Samarkand, Leninabad and Khorg. The shock was felt within a radius of 450 km. The large felt area and small magnitude suggests that this was a lower crust event (Zemletriasenia v SSSR v 1962, (1964) pp.70,82, Izd. Nauka, Moscow); Heuckroth & Karim (1970).

1968 Sep 3 (5.0) This relatively small earthquake has been relocated by Engdahl et al (1998) in northern Afghanistan between Nahrin and Khanabad, at a focal depth of 40 km. While we can find no macroseismic information from Afghanistan, the event was widely felt in the plains of Amu Darya and reported from 37 localities in Tadjikistan, up to epicentral distances of 250 km. It was felt strongly at Dangana (37.60, 69.78), Dangara (38.09, 69.33), Iol (37.77, 70.18), Khorog (37.49, 71.54), Kulyab (37.91, 69.78), Moskovski (37.61, 69.70), Obi Garm (38.72, 69.70), Pyandzh (37.23, 69.09), and it was perceptible at Dushanbe (38.57, 68.78) and Regar (38.52, 68.18) (Zakharova et al., 1972).

1972 Jun 24 (6.4) A damaging earthquake in the district of Takhar in northern Afghanistan on 24 June 1972. The large villages of Khost Fering, Nahrin (36.07N, 69.13E), Ishkimish (36.38N, 69.32E) and smaller settlements within a radius of about 25 km were ruined. A few hundred houses collapsed and about 20 people were killed. Damage to local houses was reported from Baghlan, Pul-i Khumri and Warsaj at epicentral distances of 60 km. The shock was felt at Kabul, in Peshawar and Rawalpindi in Pakistan, and as far as Kulyab (37.91, 69.78), Khorog (37.49N, 71.54), Obi Garm (38.72N, 69.70E), on the Nurek dam site (38.39N, 69.32E), and in Ssamarkland (39.66N, 66.95E) in Soviet Central Asia, that is, within a radius of 370 km. It was perceptible at Dushanbe (38.57, 68.78).[Seismological Bulletin for 1972, Seism. Center Kabul Univ., Kabul], Danby (1972).

1975 Oct 3 (6.8) An earthquake on the Chaman fault zone, close to the borders with Afghanistan at Spin Tezha, followed 12 hours later by an aftershock of 6.5. Little is known about the effects of these events in the epicentral region, a sparsely inhabited area of the Afghan border, except that they caused some minor damage at Quetta. The shock was felt strongly at Quetta and in north-west Baluchistan.

The trace, probably of only a small segment, of a north-south trending discontinuous surface fault break was found in alluvium which could be followed for about 5 km south of Spin Tezha along the Chaman fault zone. It showed an average left-lateral displacement of about 4 cm, with minor dip-slip up to the west, consistent with the earthquake focal mechanism. Farah (1976); Lawrence & Yeats (1979).
1976 Mar 19 (5.5) A relatively small earthquake on 19 March 1976 caused considerable damage in Samangan province, killing about 50 people and ruining more than 1,000 local houses. Maximum damage was reported from the areas of Khulm (36.69, 67.69) and from the nearby Tashkurgan gorges. Rockfalls and slides in the eastern section of the Khulm Gorge buried several vehicles adding to the loss of life. The shock was strong at Kornilovka, and was felt at Termez, Denay, Khorog, Dushanbe, and Kulyab and it was perceptible at Samarkand (Zemtr.v CCP1976(280) p.160).

1981 Jun 13 (5.4) A damaging earthquake in northern Afghanistan. Little is known about its effects in the epicentral area which was somewhere between Samangan and Jozjan, where a number of people were killed. The shock was felt along the Amu Darya from Termez to Parkhar and further north in Uzbekistan at Kurgan Tyube and Dushanbe. It was perceptible at Samarkand at an epicentral distance of 390 km.

1982 Dec 16 (6.5) A destructive earthquake in north Afghanistan. Little is known about the effects of this event apart from the fact that it destroyed approximately 7,000 houses, killing 450 and injuring 3,000 people in the Baghlan district. The shock caused serious damage and loss of life in the coal mines in the district. The earthquake was felt as far as Tashkent, Murgab and Tarbela, over an area of a radius of 520 km.

1983 Dec 7 (4.6) A small earthquake in Afghanistan with an instrumental epicenter in the region of Takhar. The shock was felt at Kuliab and Khorog at an epicentral distance of about 200 km.

1984 Jul 3 (5.2) We have no macroseismic data from Afghanistan for this earthquake in the Takhar district. The shock was felt at Khorog, Kuliab, Nurek, Kabodien, and was perceptible at Dushambe, Samarkand and Tashkent. (Barinova et al.,1987; Kondorskaia et al., 1987)

1986 Jan 12 (5.5) An earthquake in north-east Afghanistan with an instrumental location near Kabul. No macroseismic information is available with the exception that the shock was felt strongly in the Kabul area and at Peshawar in Pakistan.

1998 Feb 4 (5.9) A destructive earthquake in the Rustaq area (37.12, 69.82) of north-east Afghanistan resulted in estimated losses of 2,300 people killed, 800 injured and 8,100 houses destroyed, the shock making 8,000 homeless. The earthquake triggered extensive landslides which added to the damage, killing more than 6,000 livestock. The shock was felt at Dushanbe in Tadjikistan and was perceptible in Tashkent.

1998 May 30 (6.5) A destructive earthquake in north-east Afghanistan. The shock killed about 4,000 people, injuring many thousands in the districts of Badakhshan and Takhar. The shock was strong at Mazar-i-Sharif (36.70, 67.11). It was felt in Kabul (34.53, 69.13), and in northern Pakistan at Peshawar (34.00, 71.54), Rawalpindi and Islamabad (33.72, 73.06), as well as at at Dushanbe (38.57, 68.77) in Tajikistan, Andijan (40.79, 72.34) and it was perceptible at Samarkand (39.66, 66.95) and Tashkent (41.31, 69.30).

1999 Feb 11 (5.8) An earthquake in the Lowar (Logar) and Vardak provinces of Afghanistan destroyed approximately 7,000 houses, killing 70, injuring about 500 people, and making at least 14,000 homeless. Damage extended to Kabul where several people were injured. The shock was felt in Pakistan at Peshawar and Islamabad.

2002 Jan 3 13:40 (6.3) The Takhar province of the Hindu Kush. No damage or casualties have been reported so far. Buildings shook in several major cities including Kabul, Islamabad, Delhi, Peshawar and Mazar-e-Sharif, in northern Afghanistan.

2002 March 3 (7.2) The epicenter of the earthquake was in the Hindu Kush region with a depth of 195 km. The earthquake was felt in Kabul, Jalalabad, Faizabad, Mazar-i-Sharif and Bamiyan. In Kabul, 32 houses were destroyed, 20 persons injured and 6 persons killed in the
city. Except for cracked walls, there were no reports of destruction or injuries in rural areas adjacent to Kabul. A landslide 20 km south-east of Aybak, on the road to Ruy-e-Du Ab district in the Surkenda Valley created a transient lake. Damage was extensive in the villages of Souchi Bala Payan, Targane and Yawan and two other settlements. Although 340 houses were destroyed the absence of reports of significant injuries or deaths is perceived due to the fact that the earthquake took place during the day when most people were not at home. The reports from Baharak district, located east of Faizabad, indicate that a limited number of houses were destroyed in villages around the district capital and one death was registered in Malang Ab. In Jurm, there are reports of two houses destroyed in Dashteq, another eight in Abad, fifty in Souch and six in Zardeh. (UN Office for the Coordination of Humanitarian Affairs (OCHA) OCHA/GVA - 2002/0052 4 Mar 2002. Afghanistan- Earthquake OCHA Situation Report No. 1).

2002 March 25. (Ms=6.0, 5.1, 5.8) A series of shallow earthquakes hit the Nahrin district of Baghlan province in the evening of 25 March, the early morning 26 March and the afternoon of 27 March. The epicenter of the earthquakes was located southeast of Nahrin district in Baghlan province. The affected area included a radius of 12-15 km around Nahrin. Other affected areas include Burkha, Panshjiri, Lakankhel and Toli. In all 78 villages were affected by the earthquakes resulting in approximately 1200 deaths OCHA Situation Reports No. 1-7 Afghanistan – Earthquake. OCHA/GVA - 2002/0076, 30 March 2002.