Changes in absolute Gravity 2000-2015, South Island, New Zealand

Roger Bilham¹, Tim Niebauer², Christopher Pearson ³ and Peter Molnar¹

Supplementary materials:

Operational narrative for sites occupied in December 2014 and January 2015
Numerical values for each set of 100 drops from each site are listed in spreadsheets in folders with station names as indicated.

location page Data folders with raw set data
2. Gondola Bottom Station 6 Gondola top and bottom
3. Gondola Top Station 8 Gondola top and bottom
4. Botanical Garden 10 Botanical Garden
5. Cass 12 Cass Dec and Jan
6. Bealey Hotel 14 Bealey Hotel Gary
8. Heli (James Scotts Hanger) 18 Heli
10 Makawhio 21 Makawhio
11. Vexation 23 Vexation
12. Gary’s Rock 25 Gary
13 Jackson’s Garage 28 Jackson
14. Mt John 30 Mt John
15 Leo Creek 33. Leo Creek
16. Otira (not occupied) Otira
17. McKerrow (point obscured by ice)
1. Godley Head, measurements

View south of Godley Head from north (New Brighton). Site is amid trees on central headland. The tidal attraction around the headland resulted in a measured tidal variation of gravity both in 2000 and 2015..

View of the measurement hut at Godley head.

Notes After extraction from customs the vacuum was pumped down for 48 hours in Christchurch and shifted to Godley Head on 10 Dec. A detached board in the Magma fringe counter was fixed. Between Godley head and the next site (Gondola base) the power cable to the laser supply fell out of the back of the sub-assembly. After every sequence of sets the system was aligned vertical to within ±0.3 bubble divisions and to within one spot diameter. Although the coarse level was set to zero, the lower precision bubbles were not adjusted to zero. Drift was typically less than 1 division during a 12 hour sequence. Fringe amplitude was adjusted to 350mV±15 mV. The superspring has automatic adjustment but was checked to be close to zero. Vacuum ion pump voltage 4kV and 0.42-0.5 ×10^-4 throughout. Height offset measured was 14.92 cm in subsequent processing. Four data sets were acquired and processed with the corrected times. A residual 25 µGal tide is evident. The ensemble average is a weighted least-squares fit with zero slope omitting the first set:

<table>
<thead>
<tr>
<th>Name</th>
<th>#sets</th>
<th>Value µGal</th>
<th>time offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>GodleyHead 13Dec2014A</td>
<td>10</td>
<td>980489115.79±4.5</td>
<td>+01:51</td>
</tr>
<tr>
<td>GodleyHead 13Dec2014B</td>
<td>48</td>
<td>980489144.4±2</td>
<td>+01:51</td>
</tr>
<tr>
<td>GodleyHead 14Dec2014</td>
<td>32</td>
<td>980489144.7±1.3</td>
<td>0</td>
</tr>
<tr>
<td>GodleyHead 15Dec2014</td>
<td>42</td>
<td>980489147.3±1.1</td>
<td>0</td>
</tr>
<tr>
<td>Ensemble average</td>
<td>132</td>
<td>980489146.0±0.5</td>
<td></td>
</tr>
<tr>
<td>Feb2000 value</td>
<td></td>
<td>980489154.1±0.5</td>
<td></td>
</tr>
</tbody>
</table>
All the data shown as 191 sequential sets. Residual tide is related to lunisolar attraction of surrounding sea (body tide axis is reversed in this plot).

Godley Head data 12-14 Dec 2014. Decrease 8.1±1 µGal (but lower precision bubbles not checked)

An Australian team measured the same point on 28 January and derived a value of 135.2±5 µGal
Air pressure considerations

The nominal pressure entered in 2000 and during 1014/15 was 980.32 mb corresponding to an elevation of 125 m. The barometer was operating correctly in December, but for the 24 January data the barometer was inoperative (straight line above). This was noticed on the 25th and manual readings were taken for the last four hours of data. The measurements correspond to the 4th day of a 4 day high pressure over NZ at the time so that the values suggest the observed gravity for January should be reduced by 1.7-2.1 µGal. An average of 1.9µGal was used in Fig 4 assuming that the measured values were reasonably representative for the previous day.

<table>
<thead>
<tr>
<th>date and time UT</th>
<th>volts</th>
<th>mb</th>
<th>LOCATION</th>
<th>mb corr</th>
<th>µgal corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/24/2015 21:16:00</td>
<td>3.743</td>
<td>1005.375</td>
<td>Godley 998.32</td>
<td>7.055</td>
<td>2.1165</td>
</tr>
<tr>
<td>01/24/2015 22:35:00</td>
<td>3.741</td>
<td>1005.125</td>
<td>Godley 998.32</td>
<td>6.805</td>
<td>2.0415</td>
</tr>
<tr>
<td>01/25/2015 00:22:00</td>
<td>3.734</td>
<td>1004.25</td>
<td>Godley 998.32</td>
<td>5.93</td>
<td>1.779</td>
</tr>
<tr>
<td>01/25/2015 01:32:00</td>
<td>3.731</td>
<td>1003.875</td>
<td>Godley 998.32</td>
<td>5.555</td>
<td>1.6665</td>
</tr>
</tbody>
</table>

The January data have been increased by 1.9 µGal to compensate for manually observed atmospheric pressure not removed during field processing. The average value is 13±2 µGal below the 2000 value. An improved value may be possible after tidal correction using tide gage data from local harbors.
The Godley head floor plaque in Feb 2000 (156) indicates a “0 m” value 2 µGal higher than the final Feb 2000 value at 1 m.

Measurements from Australian FG5-237 operated by Nick Dando forwarded by Vaughan Stagpole measured 28 January indicate 495.17±5 µGal at 0 m = 144.17 ±3 µGal at 1 m with a newly measured gradient of -3.51 µGal/cm
2. Gondola Bottom station

-43.588°S, 172.716°E, Elevation 77.3m gradient -2.95 µGal/com
2000 value was 980 505 179.9±0.92. Decrease 43.4 G.al.
14 Jan 2015 value adopted 136.0±0.8 µGal, 136.5±0.6 lsf µGal

16 Dec decrease 53.5 µGal
Dipstick 7.4 cm + upper 8.05 cm Height entered 15.45 cm Vacuum start 0.40. Data suspect because lower precision levels may have been misaligned and the superspring magnet became detached at about this time.

24 January Decrease 43.4 µGal i.e. identical to Gondola top

The point lies to the left of the rear entrance to the building that hosts the machinery for operating the Gondola. A small storage room with a staircase leading to an upper storage room is found on the north side of the building. The point is at the base of the stairs.

The mark now consists of a 2 cm diameter stainless-steel disk epoxied approximately flush with the concrete floor centered with a 3 cm long stainless steel screw. The point replaces a five pointed star glued to floor.
The new identifier mark on the floor near the base of a 55 gallon oil drum, and a view of the measurement location with Chris Pearson in the foreground.
3. Gondola Top station

-43.5894°S 172.7166E Elevation 445m Gradient -3.81 µGal/cm
2000 value at 1m was 980 421 716.2±1.4
17 Dec 2014 value at 1m is 980 421 679.2±2.3
23 Jan 2015 value at 1 m is 980 421 675.2±2.3
Reduction in g is 418.0 µGal ie 10.97 cm uplift using free air gradient.
17 December (Wednesday) started at 12:45 local
December Height offset 15.0 cm, Vacuum start 0.40, spring near zero. Lower
course bubble centered but lower precision bubbles were not centered.
January all bubbles centered but lower precision bubbles were not centered.
January all bubbles centered and spot-on. Low noise at night but high vibration and
power line fluctuations.

The January measurement is 5 µGal lower than the Dec measurement. Possibly due
to the tidal residual.

The point was previously identified by a five pointed star glued to floor. The floor
was damaged in the 2010 earthquake and after regrouting cracks the floor was
ground smooth and painted leaving no trace of the mark. The mark now consists of a 2 cm diameter stainless steel disk epoxied approximately flush with the concrete floor centered with a 3 cm long stainless steel flat-head screw. A plaque originally located on the wall about 4 feet above the floor, had been removed during post earthquake painting, and was re-glued into position.

Mark Forster next to top Gondola measurement point showing reinstalled wall plaque. Newly recessed floor mark is below lower tripod. (gondola@welvomeaboard.co.nz) The freezer room is to the right of the door visible in the photo.

The point is to the south of the main freezer at the end of the corridor from the disembarkation point at the top of the Gondola. The corridor is prohibited from public access.
4. Botanical Gardens, Christchurch, Gravity up 53.0±5

<table>
<thead>
<tr>
<th>Botanical Gdns</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Grad. elevation</th>
<th>sets</th>
<th>RB</th>
<th>gradient</th>
<th>µGal @ 1m</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 value</td>
<td>-43.5293</td>
<td>172.6193</td>
<td>3.60</td>
<td>7m</td>
<td></td>
<td></td>
<td>3.6</td>
<td>980493 985.3</td>
</tr>
<tr>
<td>18 Dec2014 (19f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>1.72</td>
<td>980494 038.37</td>
<td>3.6</td>
</tr>
<tr>
<td>19f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>980494038.36</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Sue Molloy at the Botanical Gardens, Christchurch. The inscribed value 980494 2(79) dated 6 Feb 2000 may have been a provisional number, since it is 293 µGal higher than the “0”m value calculated in Feb 2000 (980494 345.3) corresponding to a gravity point 81 cm below Feb 2000 ground level (67 cm below Dec 2014 ground level. View of building (labeled workshop) shows met station in background. The magnetic observatory buildings (visited by Gutenberg and Richter in the 1960’s) were originally in front of this workshop.
Notes The instrument would not give good residuals apparently because of superspring errors (various stops and starts are registered as data sets 19 Dec a,b,c, d and e during which the delay was increased from 25 ms to 35 ms and eventually 40 ms. After dismantling the superspring, a loose magnet was identified and removed that had prevented mechanical centering. Afterwards good data were acquired with a 40 ms delay, and the delay was reduced to 35 s and a new run started 19 Dec(e) at 4:30 pm. The vacuum DC power was inadvertently off for about an hour and by 4:30 it had dropped to 0.84 10e-4. By 5 PM the vacuum had fallen further but at a lower rate but by 5:15 the vacuum was improving. During this time the ion pump voltage was steady at 4kV . The temperature in the room increased and required opening the door to cool it down from midday to 5 pm. Finally the fiber entry point into the laser was found very sensitive and unstable and needed constant vigilance. Its instability caused the peak to peak fringe amplitude to climb over 400 mV and to fall to zero. There was no easy way to clamp this permanently in an optimum mode. The deviation on early runs (a b c d) was inordinately large due to the superspring magnet problem. Good data were finally obtained overnight (19f) whose data are shown above (but note low red-blue separation).

19 Dec 2014 local (18 Dec UT)
Vacuum start 0.50 midday. The vacuum reduced throughout the day 0.79-0.41e-4 at 4pm started at 12:45 local but data bad, remove magnet in superspring, 17 hour run started at 8:30 pm.

Lower height measurement to floor 7.55 cm
Upper height measurement 7.95 cm
Height entered 15.50 cm

Polar motion entered x=0.0426 y=0.2728. 350±5 mV peak to peak
The mark consisted of a crude cross chiseled into the concrete floor of the former observatory workshop. A 3 mm hole was drilled into the center of the cross surrounded by a diamond drilled hole sufficient to recess a 3 mm thick stainless washer. The washer was centered with a Philips-screw and was epoxied in place.
5. **Cass, University of Christchurch field station** Decrease 27.6±2 µGal

-43.03500 Long: 171.75900 Elev: 610.00 m

Cass viewed from the west is 100 m north of the northerly dump of trees.

The instrument is set up above a Philips screw in the drying room. 36 hours of data were obtained in December and ten hours in January a week after a Mw=6 earthquake at a distance of 30 km. -43.06, 171.25 6.0 at 5 km (USGS 5.6 43.066°S 171.241°E depth=10.0 km) 2015-01-05 10:48:42 (UTC-07:00)

Notes: The ion pump was unable to hold the vacuum during the drive from Christchurch (2 hours) and the turbo pump was therefore installed and run overnight. Inadvertently the bleed valve on the pump was open and on opening the main valve, air had entered the chamber. The poor resulting vacuum was not noticed until the next day because the ion pump voltage indicated normal voltages (4kV) and the pressure indicated a suspiciously low 1.2E-4 torr. It was necessary to pump down for the next 24 hours to recover the vacuum and a further three days before the ion pump could sustain the value. While awaiting the vacuum pump-
down the system was dismantled to fix the superspring. Fred Klopping at Micro-g had, in an internet message, advised replacement of the magnet in the superspring to return its behavior to stable operation. The superspring cover was removed and the damping magnet assembly unfastened and removed (held by two screws). During removal a second magnet fell off its glued position suggesting that the aluminum-chromium glue adhesion was not very secure (the superglue remained on the chromium plate to the neodymium magnet. Five-minute Araldite epoxy was used to reposition the magnets with the same polarity that they had previously been glued. Tape was needed to hold the magnets during glue setting to prevent attractive forces from moving them from their centered positions. Were a second magnet placed behind each inward facing magnet, and both placed in a milled depression, the resulting pair of magnets would not need glue.

On 12 January the point was reoccupied overnight, with considerable care to align bubbles and spot position.

Cass gravity 12 January 2015

Cass all data 98.441

Cass all data Average 98.4±0.3 Decrease 20.1±2 µGal
6. Bealey Hotel 24 Dec

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Elevation</th>
<th>Pressure</th>
<th>Sets r/b</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2000</td>
<td>-43.02</td>
<td>171.61</td>
<td>-2.73</td>
<td>629</td>
<td>187.8</td>
<td>0.5</td>
</tr>
<tr>
<td>24 Dec 2014</td>
<td>4</td>
<td>6.7</td>
<td></td>
<td></td>
<td>182.0</td>
<td>2.2</td>
</tr>
<tr>
<td>24B Dec 2014</td>
<td>barograph operating +2.91</td>
<td>12</td>
<td>2.1</td>
<td></td>
<td>184.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Least squares fit, outliers removed, and no baro correction</td>
<td>181.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24C Dec 2014</td>
<td>discarded</td>
<td>23</td>
<td>0.06</td>
<td></td>
<td>870.6</td>
<td>2.1</td>
</tr>
<tr>
<td>12 Jan 2015</td>
<td>barograph not operating!</td>
<td>29</td>
<td>19</td>
<td></td>
<td>178.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Least squares fit no barograph correction</td>
<td>179.9</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point is in recess at back left of first garage door on left. All three data runs were recorded with the turbo pump connected because, due to the previous day’s vacuum leak, the ion pump voltage fell rapidly in its absence. In the second sequence the hour was incorrectly set on the computer (hour and day both 23) but was adjusted +7 hours in subsequent processing. The third and longest run (overnight with low scatter), however, yielded a significantly lower value. Its value corresponds to a possible misalignment of the vertical by 0.045° but the blue red separation was also extraordinarily low (0.06). The top levels and the lower coarse level were correctly aligned but the lower precise bubble levels were not checked. The red blue relation appears inverted.

The elevations here are not precise, so identical values (629m and 939.93mb) were used in February 2000 and for the present data. The turbo-pump was operated for the December sessions due to a previous vacuum problem at Cass. The red blue separation was low for all these sessions with occasional low outliers. The 24C session with zero red/blue separation due to its low value was discarded (laser frequency not stable? The same unreasonably low value was obtained initially at the next site, Arthur’s Pass). The lower precision-bubbles were not set, but the
coarse bubble was centered. Due to uncertainties in the early data, the site was re-occupied 12 January taking care to set lower and upper precision levels, however the barometer was at this time not working for this site (3.225 V at 22:34, 3.227 V at 1:30 and 3.214 V at 7), and although the laser started flashing only after set-five, the blue/red separation was reasonable (19 µGal).

Bimodal values recorded at Bealey. The lower ones are clearly outliers because the higher values differ from the January values by only 4 µGal, and by 2 µGal if the barograph correction is omitted (lower plot). Red/blue pairs appear inverted?

12 January 2015 data from Bealey. The missing barograph correction is +0.7 µGal initially +.9 µGal for set 6, and -0.7 µGal at the end (based on voltage measurements) so that its mean corrected value differs little from that indicated.
7. Arthurs Pass Jail Dec 2014-Jan 2015 -42.95 171.57 (elevation used 732.7 m)
Decrease is 8.6±1.5 μGal

12 Jan Arthurs Pass 3 41 sets, 002.4±0.8 μGal, red/blue separation=31.3 μGal

The jail is inside the police station, and the key was left for us at the Visitors center in Arthur’s Pass. Two unacceptable data sets were acquired 24/25 Dec 2014, mired by accidental operator errors, but the measurements were repeated successfully 11 January 2015. The instrument was left running for 37 hours with the turbo pump 24-25 December due to doubts about the ion pump (repaired before next site). On return the instrument was diagnosed as having been leveled after spot alignment – its spot position was three diameters off and its data discarded. After re-leveling, the instrument was restarted running overnight only on the ion pump, but its lower precision bubbles were not aligned, only the coarse bubble. The data were good until about 5 am when the system refused to drop- a loose connection between the computer and the Magma A-D board. The January measurements use manual barometer observations.

Graph of all Arthurs Pass Jail acquisitions. Earlier values are unacceptable due to laser misalignment and superspring verticality problems. For the reliable data below (also shown above right) the observed slope must be corrected using manual barometer observations.
Manual Barometer Readings Arthurs Jail (nominal pressure entered 928.7 mbar)

Conversion factor \(\text{volts} \times 125 + 537.5 \)

<table>
<thead>
<tr>
<th>date and time UT</th>
<th>volts</th>
<th>mb</th>
<th>mb</th>
<th>µGal</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10/2015 23:11:00</td>
<td>3.146</td>
<td>930.75</td>
<td>2.48</td>
<td>0.744</td>
</tr>
<tr>
<td>01/10/2015 23:59:00</td>
<td>3.144</td>
<td>930.5</td>
<td>2.23</td>
<td>0.669</td>
</tr>
<tr>
<td>01/11/2015 01:26:00</td>
<td>3.141</td>
<td>930.125</td>
<td>1.855</td>
<td>0.5565</td>
</tr>
<tr>
<td>01/11/2015 03:00:00</td>
<td>3.146</td>
<td>930.75</td>
<td>2.48</td>
<td>0.744</td>
</tr>
<tr>
<td>01/11/2015 20:15:00</td>
<td>3.135</td>
<td>929.375</td>
<td>1.105</td>
<td>0.3315</td>
</tr>
</tbody>
</table>

Offset January measurements 14.7 cm, gradient -2.33 µGal/cm, vacuum 0.64x10^{-4}, Torr

A screw in the floor marks the precise position. When aligned north, the NW foot of the tripod lies above a crack in the concrete which renders tilt sensitive to the observer’s position.
8. **James Scott’s Hanger, 10 km south of Fox Glacier**

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Grade</th>
<th>Elevation</th>
<th>Feb 2000 μGal</th>
<th>2014/15 μGal</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helipad</td>
<td>-43.534</td>
<td>169.839</td>
<td>2.92</td>
<td>70</td>
<td>980439547.40</td>
<td>980439547.81</td>
<td>0.4±</td>
</tr>
</tbody>
</table>

An ion pump problem was fixed at this site while waiting for clear weather. The turbo-pump was run continuously during repairs. The ion pump battery was found unable to maintain a vacuum for more than a few hours, and in the absence of a suitable external battery plug, it was dismantled and a cable extension inserted to by-pass the internal battery. The extension consists of a cable with female and male quick-disconnects that pass through the hole previously occupied by the 12V external socket. A 7.2AH 12V gel-cell was taped to the outside. On reassembly no 4 kV voltage was detected, which further inspection revealed to be caused by a dry solder joint between the hi-tension cable and the feed through at the back of the case. Black soot deposits on the gold-plated turret showed that arcing had occurred in the past, suggesting that this may have contributed to former vacuum problems. The joint was soldered and taped and voltages were found to be normal.

![Photo shows absence of solder on the hi tension feed-through of the ion pump supply, prior to repair. Black arc deposits are faintly visible near cavity left of the gold-plated hole. Its heat shrink cover alone may have kept the joint in connected for some time.](image)

A review of procedures up to this point revealed that in all previous points alignment of the lower precision bubbles had been omitted. At this site and in all subsequent measurements and re-measurements, the instrument careful alignment of the lower and upper precision bubbles and the reflected spot position was undertaken in the stated order. The measurements were started at about 5 am on 1 January (6 pm local time) with vacuum 1.35E-4, and spring +2-4mV. The fiber optic alignment from the laser initially gave almost zero light. Slight adjustment and tightening of the output fitting brought intensities to >400mV. Fringe amplitudes were adjusted to 350mV using the small fiber optic screw, and the resulting fringes displayed a remarkable absence of intensity variation during dropper carriage oscillation, presumably due to ultra precise alignment of lower bubbles. Photos of spirit levels were taken at this site and at subsequent sites for quality control.
Essentially no change at the helicopter hanger. 547.84 ± 1.3 compared to 547.4±2.

End of run Photos

top N and E bubbles at end of run 1 Jan 2015
bottom north and east bubble at end of run
10. Lame Duck (Makawhio) 2 January

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L.Duck Feb 2000</td>
<td>-43.72</td>
<td>169.85</td>
<td>854.86</td>
<td>1680</td>
<td>0.6</td>
</tr>
<tr>
<td>Lame duck January 2015</td>
<td>980091100.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lame Duck 2245 1 January 2015</td>
<td>980091608.43</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lame Duck 2345 1 January 2015</td>
<td>980091628.64</td>
<td>4.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lame Duck 0057 2 January 2015</td>
<td>980091672.90</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lame Duck0229 2 January 2015</td>
<td>980091639.13</td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted least squares fit</td>
<td>980091625.52</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The site took 15 minutes to fly to, 30 minutes to erect the gravity tent, 2 hours to level the tripod (the pad is not level) and 30 minutes to optimize the laser amplitude due to a combination of tripod/super-spring horizontal offset and fiber optic coupling. The system took 75 minutes to disassemble and place in the helicopter net, and 15 minutes to return to James’ helicopter pad.

Five file sets of were obtained as a result of stopping the system to adjust beam overlap, fringe amplitude and bubble centering. The first set is rubbish, and the beam centering on the last three sets was 3 beam diameters off. Photographs were taken throughout of bubbles and beam overlap and these are time stamped in local time.
The new value is higher than the old value by 1 µGal but within the uncertainty. If one ignores the first 2 and last 3 points the new value is 5 µGal higher and 2 standard deviations. The only thing abnormal about the acquisitions was the laser which I do not recall seeing flashing at all.
11. Vexation -43.63767 169.89349E el 1478 m
Sessions measured are as follows:

<table>
<thead>
<tr>
<th>Vexation</th>
<th>-43.637</th>
<th>169.893</th>
<th>4.4</th>
<th>1475</th>
<th>980131601.1</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vexation January</td>
<td>980131557.7</td>
<td>2.7</td>
<td>4.0</td>
<td>1475</td>
<td>980131601.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Vexation 11:28</td>
<td>980131562.21</td>
<td>2.2</td>
<td>2.0</td>
<td>12</td>
<td>980131589.96</td>
<td>0.9</td>
</tr>
<tr>
<td>Vexation 12:02</td>
<td>980131597.47</td>
<td>2.3</td>
<td>12.0</td>
<td>2.0</td>
<td>980131588.33</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Least squares fit

| Decrease | 12.8 ±2 |

The concrete pads for the gravity measurements are not due north but there is of course no way to change this and the Coriolis correction will be the same for each occupation. The tent took 45 minutes to erect on solid rock using boulders. Two holes with pins were found in the rock from 15 years ago. The tent overhangs the flat part of the outcrop. As with Makawhio the pads are not level and this required considerable (2 hours) adjustment. The separation at the top between tripod and interferometer is about 1 cm more than usual, and because two legs of the tripod were fully extended the stability was poor. It was necessary to slide both tripod and base horizontally to align the beams correctly.

The large top separation was measured to be 8.57 ±0.1 cm, the dip-stick base separation was 8.06 cm and the value entered was 16.62 for all measurements. The gradient was measured in 2000 to be 4.0 µGal/cm – since this high value is critical to the transfer height comparison it might be of value to compare the gravity closer to actual heights measured, to be less sensitive to the gradient and small lateral and vertical offsets.
12. Gary’s Rock 40 μGal decrease (groundwater draining from swamp?)
9 January data reprocessed with correct parameters 14 January

9 January Gravity: 980359807.59 μGal
Set Scatter: 3.97 μGal
Lat: -42.64900 Long: 171.54000 Elev: 120.00 m
Actual Height: 132.80 cm
Gradient: -4.410 µGal/cm
Nominal Air Pressure: 998.92 mBar
Setup Height: 16.50 cm

10 January data with the same input parameters.
10 Jan Gravity: 980359818.42 µGal
Set Scatter: 1.61 µGal
Lat: -42.64900 Long: 171.54000 Elev: 120.00 m
Setup Height: 16.50 cm
Transfer Height: 100.00 cm Actual Height: 132.80 cm
Gradient: -4.410 µGal/cm
Nominal Air Pressure: 998.92 mBar
Polar Motion Coord: 0.0222 " 0.2865 "

Least squares fits
9 Jan only 805.9±1
g9 9 Jan 807.6±4
9 & 10 Jan 807.1±1 with last point +12.2 to compensate for missing red set
10 Jan only 814.81±1.4 ditto
g9 10 Jan 818.42±1.6

Adopted decrease is 858.8 − 818.4 = 40.4 µGal

No Barometer recorded

The valley is a water saturated bog that was drained many decades ago. The nearby stream and water-logged swales suggest that the region continues to be drained. A 40 µGal decrease would correspond to a >1 m decrease in water table in 15 years. After the 2010 Christchurch earthquakes the farmer opposite Gary’s rock indicated that streams flowed during the dry season suggesting compaction during shaking. Mw=6.0 earthquake occurred earlier that day 100 km to the east.

The first set (9 Jan) was initially aligned well but data quality decayed and the last two points (not shown) were rejected as spurious due to poor fringe amplitude, a problem that developed in the last three points shown. It was decided to use only data from the second run (10 Jan) and to compensate the last data point (blue) by increasing it by (red+blue)/2=12.2 µGal. The resulting least squares value is 4 µGal below the output from g9 (818.4) which value was adopted for the 2015 value. The value in 2000 was 858.8 and hence the decrease is 40.4±2 µGal.
combined data yields 46 µGal decrease. Second set only yields 40-44 µGal decrease.
13. **Jacksons Garage** decrease 6.9±1.5 μGal

The point is marked by a recessed stainless washer on the concrete floor in the garage of the owner at Jacksons Retreat, behind the office.

Feb 2000 50.9±1
2245 5 Jan elevation 280 m 45.3±2 14 sets
0745 6 Jan elevation 280m 39.57 1 set
0915 6 Jan elevation 280m 47.0±9 optic fiber coupling problem- discard

igor 44.0±0.5 μGal (point 14 +12 μGal) 33 sets barometer working

decrease 6.9±1.5 μGal
Adopted data are shown.
14. Mt John decrease 6.8 ±1 µGal

Access: drive to Lake Tepako from Christchurch (3 hours) and take the road to the Astro Café/Observatory about 1 km south of town. The Observatory at 102.5 m is open from 9-6. The measurement point is in the workshop building close to the west facing window wall and is marked by a 2 cm diameter circular hole. An Australian team planned to embed a more permanent mark when they measured the same point with an FG5 2 February 2015. It is not known whether they placed this new point coaxially with the one we measured.

Operational notes: The instrument was set up 13 January with a combined mechanical offset of 14.65-14.7cm, vacuum 0.85E-4 decreasing to 0.83E-4 on 15 January, superspring ±4 mV and bubbles and spot overlap checked twice each day. Power to the ion pump was inadvertently not connected and the vacuum became unacceptable early on the morning of the 15th (3.5 days from a 7.5 A gel cell) at the
same time as an inbound pressure low (700 mb). The last 5 hours on the 15th of January were subsequently discarded.

Above: Two days of data from Mt John. The grey lines are the raw data and the red line the average of red/blue laser frequency pairs. Blue is body tide, green is load tide.

A successful attempt to repair the barometer was made at the start of the 15 Jan session after it failed midway through the 13 January session. Data after the vacuum failure are not shown.

Nick Dando from Australia and Vaughan Stagpoole occupied Mt John on 2 Feb 2015 with FG5-237 and measured a gradient of -3.91 µGal/cm with a value of 980248544.51±2 µGal (Set Scatter: 1.55 µGal, Measurement Precision: 0.32 µGal, Total Uncertainty: 2.04 µGal Number of Sets Collected: 24) Elevation 1032 m 896.26 mBar.

The elevation we used in 2000 and 2015 however was 1021.5 m (896.4 mBar). With an admittance factor of 0.3 µGal/m the adjustment is negligible. We measured the same gradient -3.913 µGal/cm in 2000.

This value is higher than the value we measured in the previous month by 6.7 µGal. (and is coincidentally similar to the Feb. 2000 measurement value). It is not known whether their new measurement was at the same level and location as ours.
15. Leo Creek 20/21 January 2015 decrease -9.3 µGal.

-43.72067°S, 169.8522°N, Elevation 1274m: nominal pressure 869.27 mb
Measured offset 15.45 20 Jan. Time offset- computer was 4s in advance of GPS time.

The site was set up on the 20th initially in clear skies but heavy rain soon developed and the ion pump began to lose power due to a short in the ion pump cable. Measurements were abandoned and resumed the next day it was occupied in freezing conditions. The laser took an hour to stabilize (flashing), but the superspring took more than 2 hours, presumably due to icing or heavy condensation inside the superspring chamber. The generator exhaust was arranged to heat the spring chamber but it stabilized at -16 mV for the first six sets despite being driven to +20 mV manually. Initial fringe amplitudes could not be made to exceed 250mV due to condensation somewhere on the optics. After 3 hours the fringes climbed to 400 mV and were subsequently reduced to 350mV after which reliable data below were acquired. The bubbles and spot were checked after every four sets, sometimes more frequently but often no adjustments were needed. Maximum offset 1/2div. Despite the uniformity of operating conditions the noise level of some sets was undesirably large. Possibly cold air currents passing through the tent
Feb 2000 398.4±0.5 µGal
Jan 2015 379.1±0.7 µGal
Decrease=-19.3±2 µGal