SEISMOLOGY

Raising Kathmandu

On 25 April 2015 northern Nepal shifted up to 7 m southward and Kathmandu was raised by 1 m. The causal earthquake failed to fully rupture the main fault beneath the Himalaya and hence a large earthquake appears to be inevitable in Nepal’s future.

Roger Bilham

For many decades seismologists have warned of a possible damaging earthquake near Kathmandu, in the Himalaya\(^1\). The moment magnitude (\(M_w\)) 7.8 Gorkha earthquake — which struck Nepal in April 2015 and resulted in more than 8,700 deaths, destroyed 490,000 houses and 30,000 classrooms, and rendered 3.5 million homeless — was thus not a complete surprise. But many features of the earthquake were indeed surprising. An international workshop (The Gorkha Earthquake 2015, Nepal: Present Knowledge and Way Forward on Future Research) organized by the Nepal Academy of Science and Technology (NAST) and the International Centre for Theoretical Physics (ICTP) was convened on 17 June amid the aftershocks in the ruined capital. Discussions at the workshop led to the worrisome conclusion that this was not the earthquake we were expecting.

The Himalaya Mountains define the collision zone between the Indian Plate and southern Tibet. Tectonic convergence across the mountains occurs at a rate of roughly 18 mm yr\(^{-1}\). Strain accumulated during this convergence is released by occasional great (\(M_s > 8\)) and major (\(M_s\) between 7.0 and 7.9) earthquakes, permitting the Indian plate to descend beneath southern Tibet. Many millions of people live fewer than 15 km above the gently dipping thrust fault on which these earthquakes take place.

Great and major earthquakes occurred in 1255, 1505, 1833, 1934 and 1950 in the region surrounding Kathmandu. But an apparent absence of earthquakes to the west of Kathmandu in the past 500 years suggested that a great earthquake in that region was likely to occur\(^2\). The epicentre of the 2015 Gorkha earthquake was located 70 km west of Kathmandu, roughly where anticipated. But, vexingly, the quake was too small to be the expected great event. Instead, the quake shares many similarities with the damaging major earthquake that occurred in 1833 north of Kathmandu, with similar magnitude and damage pattern\(^3\).

As discussed at the workshop, the dynamic development of the 2015 earthquake was captured by distant and local seismometers, by synthetic aperture radar imagery and by a dozen global positioning system (GPS) receivers operating near and above the rupture zone (Jean-Philippe Avouac, Cambridge University, UK; Abdelkrim Aoudia on behalf of Eric Lindsey and colleagues, University of California, San Diego, USA). The \(M_w = 7.8\) mainshock initiated an eastward-propagating fault rupture that propelled an oval-shaped segment of the Himalaya (approximately 150 km by 65 km in size) southward over the Indian Plate. Although the Gorkha earthquake started out in an anticipated location, no one had suspected that its rupture would pass beneath and beyond Kathmandu eastward, with rupture terminating at the southern edge of the Kathmandu Valley. Two weeks later, an \(M_s = 7.3\) aftershock caused further damage to dwellings and hillsides at the eastern end of this rupture.

The area most afflicted is now accessible only by helicopter, owing to the remoteness of mountain villages and impassable conditions on roads and tracks. Landslide experts at the workshop (Christoff Anderson, GFZ Potsdam, Germany; Deo Raj Gurung, International Centre for Integrated Mountain
Development, Nepal; Joshua West, University of Southern California, USA) warned that
the approaching monsoon is likely to further
destabilize weakened hillsides, worsening
damage to rural infrastructure.

The large aftershock on 12 May was
one of more than three hundred $M_w > 4$
aftershocks that encircled the rupture zone
(Loc Bijay Adikhary, National Seismological
Center, Nepal). These aftershocks define the
limits of the fault rupture and show that it
petered out 10 km beneath the surface, on the
southern edge of the near-horizontal thrust
fault beneath the city. As a result, a region
of accumulated stress not released in the
earthquake now sits uncomfortably close to
the southern suburbs of Kathmandu (Fig. 1).

How this incomplete southward rupture will
mature is of great concern. At least three
scenarios are possible: stress now stored south
of Kathmandu, in the Lesser Himalaya, could
potentially fuel another damaging earthquake;
the stress could remain stored in the Lesser
Himalaya to contribute to a larger, great
earthquake in the future; or the stress may
diffuse southward benignly as creep.

Major Himalayan earthquakes in 1833
(north of Kathmandu) and in 1905 (northwest
of Delhi) likewise failed to rupture to the surface
and probably also transferred stress into the Lesser Himalaya. This stress
cannot remain there indefinitely. A dozen
new and ongoing GPS measuring stations
have therefore been judiciously placed to
monitor the future development of strain
south of Kathmandu and in the region to the
west of the current rupture (Bishal Upeti,
NAST, Nepal). Students from Tribhuwan
University in Nepal, in collaboration with
the ICTP in Trieste, Italy, and several US
Universities are actively involved in these
investigations. The teams aim to reverse the
pattern of the past few decades when geodesy
and seismology in Nepal were the mandate
of government departments only. University
involvement is essential if young Nepali
students are to become future seismologists
and earthquake engineers.

Kathmandu is built on sediments of an
ancient lake bed that are about 650 m thick.
These sediments have amplified seismic waves
distant earthquakes in the past and
did so again during larger aftershocks from the
2015 quake. However something entirely
different occurred during the mainshock. The
bedrock floor of the basin was forced by the
earthquake rupture to move in a semicircular-
shaped, southward path with a diameter of
about 1.5 m. The bedrock movement stopped
dead “1.3 m south and 50 cm higher” after
10 seconds, but the sediments in the valley
continued to resonate for a further two
minutes (Jean-Philippe Avouac, Cambridge
University, UK).

Geotechnical engineers (Ramesh Guragain,
National Society for Earthquake Technology,
Nepal; Deepak Chamlagain, Tribhuwan
University, Nepal) at the meeting noted that
these slow oscillations, which had periods
of about 3 to 5 seconds, were both the
undoing and saving of the metropolis. Video
recordings confirm that it found hard
to stand during the translation of the city,
while slow lurching motions toppled and
dismantled many of Kathmandu’s heritage
temples and traditional buildings. Yet the
ground accelerations did not exceed 0.25g
(where g is acceleration due to gravity),
despite ground velocities in excess of 50 cm s$^{-1}$
(Sudhir Rajaure, Ministry of Mines and
Geology, Kathmandu). The slow lurch of
this enormous southward and upward pulse
was unexpectedly gentle, compared with
accelerations of up to 1g estimated from scant
historical earthquake accounts.

Despite the low accelerations, the lurching
resonance irreparably damaged 97,000
buildings in Kathmandu, including many
school buildings. A few hundred schools
recently retrofitted by engineers from the
National Society for Earthquake Technology
survived the earthquake, but hundreds of
schools assembled from stone and wet-mud
mortar decades before the earthquake did
not. Fortunately the earthquake struck at the
weekend, when schools were unoccupied.

Unlike in previous major earthquakes,
liquefaction and sand venting in the
Kathmandu Valley were rare, with only a few
instances reported (Deepak Chamlagain,
Tribhuwan University, Nepal). Whether this
was caused by low ground accelerations or
because the water table in Kathmandu in the
past several decades has been sinking rapidly
as a result of groundwater withdrawal is not
clear. Widespread liquefaction occurred in
regions south of the mountains where water
tables remain close to the surface. The reach

Figure 1 | The 25 April 2015 Gorkha earthquake, Nepal. **a.** Villagers reconstructing their ruined house near the epicentre of the Gorkha earthquake. Despite Government advice to incorporate earthquake resistant assembly methods, the approaching monsoon has impelled many villagers to reconstruct immediately using the same wet-mud mortar and stones that led to their collapse in the main shock. **b.** Rupture caused by the $M_w = 7.8$ earthquake and subsequent $M_w = 7.3$
aftershock (yellow stars) initiated west of Kathmandu and travelled eastward (purple). A decade of micro-earthquakes (blue dots) before the earthquake marks the region of greatest pre-earthquake stress, white dots indicate $M_w > 4$ aftershocks (Loc Bijay Adikhary, National Seismological Center, Nepal; http://www.seismonepal.gov.np/index.php?action=earthquakes&show=recent). Black triangles indicate pre-earthquake GPS stations; white triangles are post-earthquake GPS stations. White arrows show Himalayan convergence at 18 mm yr$^{-1}$. Observations from the Gorkha earthquake, discussed at the workshop in Kathmandu, indicate that the earthquake incompletely ruptured the region between historical earthquakes to the east (1934, $M_w = 8.4$) and west (1905, $M_w > 8.6$), shaded yellow. If the unruptured region (blue dashed) ruptures in a single earthquake, it could exceed $M_w = 8$. Thus, the 2015 earthquake was not the great earthquake anticipated west of Kathmandu.
of the earthquake was immense. It was felt throughout much of India and as far south as Chennai (Stacey Martin, Earth Observatory of Singapore).

Fears of a future large earthquake in western Nepal are on everyone’s mind. The meagre historical record indicates that no contiguous great earthquake has immediately followed a Himalayan $M_w \geq 7.5$ earthquake, but immediacy is an elastic measure of time when it comes to forecasting earthquakes. For example, the 1950 $M_w = 8.6$ earthquake in Assam, India, was preceded by an apparently contiguous $M_w = 7.5$ earthquake just three years earlier.

The emerging view from the meeting was that although the mainshock nucleated near the anticipated location, it was not the long-awaited ‘big one’ in western Nepal. Given our unsettling lack of knowledge about the 2015 earthquake before it occurred, the best recommendation for Nepal’s policymakers is to use this opportunity to reconstruct the entire damaged region incorporating earthquake-resistant construction, and to initiate ubiquitous retrofits of village dwellings throughout western Nepal. According to the expectation of workshop participants, another major earthquake to the west of Kathmandu is unavoidable.

And this future quake could be much more powerful.

Roger Bilham is in the Cooperative Institute for Research in Environmental Sciences and Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA.

e-mail: bilham@colorado.edu

References