Remote-sensing science and technology for studying glacier processes in high Asia

1Department of Geography and Geology, University of Nebraska, Omaha, NE 68182, U.S.A.
2United States Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, U.S.A.
3National Snow and Ice Data Center, University of Colorado, Boulder, CO 80309, U.S.A.

ABSTRACT. A large number of multispectral and stereo-image data are expected to become available as part of the Global Land Ice Measurements from Space project. We investigate digital elevation model extraction, anisotropic reflectance correction and selected glacier analysis tasks that must be developed to achieve full utility of these new data. Results indicate that glaciers in the Karakoram and Nanga Parbat Himalaya, northern Pakistan, exhibit unique spectral, spatial and geomorphometric patterns that can be exploited by various models and algorithms to produce accurate information regarding glacier extent, supraglacial features and glacier geomorphology. The integration of spectral, spatial and geomorphometric features, coupled with approaches for advanced pattern recognition, can help geoscientists study glacier mass balance, glacier erosion, sediment-transfer efficiency and landscape evolution.

INTRODUCTION

Accurate characterization and monitoring of the Earth’s cryosphere is essential in order to ascertain global climate and environmental change (Paterson, 1988; Østrem and Brugman, 1991). Alpine environments and glaciers play significant roles in atmospheric, biospheric and lithospheric processes (Bishop and others, 1998a; Shroder and Bishop, 2000). The uplift of high Asia is of considerable scientific interest because of a host of interlinked geologic and geographic problems that include complex feedbacks between climate change, glaciation, surface processes and tectonism (Shroder and Bishop, 2000). The chronology and extent of glaciation in high Asia is at the heart of much of this discussion. Recognition of the diversion or capture, or both, of many of the great rivers of Asia, and these relations to past and present ice is profound. Furthermore, considerable attention is focused on the role of alpine glaciers as the main source of meltwater for irrigation and agriculture.

Given the significance of alpine glaciers in high Asia, it is important that baseline cryospheric information becomes available (Bishop and others, 1995). It is notoriously difficult to obtain accurate in situ measurements and information in alpine areas due to hazardous and logistical difficulties. The alpine cryospheric system, however, can be monitored and quantitatively measured via remote sensing (Hall and Martinez, 1985; Williams and others, 1991; Bishop and others, 1998b). Challenges that must be addressed include the current paucity of algorithms and the need to integrate field and remote-sensing investigations.

The purpose of this paper is to demonstrate the utility of remote sensing for extracting topographic and glacier information from satellite multispectral and stereo data. In addition, we address issues related to the Global Land Ice Measurements from Space (GLIMS) project and make applications to glaciers in northern Pakistan.

BACKGROUND

The Himalaya and associated mountains of high Asia, together with the immense Tibetan Plateau, constitute a major topographic part of planetary climate control, as well as a huge catchment of snow and ice, and a watershed for the surrounding dry lowlands. Glaciers in high Asia have been monitored sporadically for several centuries, with increasing attention in recent years (Field, 1975; Mayewski and Jeschke, 1979; Mayewski and others, 1980; Hewitt, 1989). In the Himalaya of northern Pakistan, studies of glacierization and past glaciation have been especially numerous (Derbyshire and others, 1984; Goudie and others, 1984; Miller, 1984; Shroder and others, 1989, 1993; Hewitt and Young, 1990; Shroder and Bishop, 2000).

Traditional remote-sensing investigations have used satellite imagery of low to moderate resolution, with visual interpretation and traditional statistical classifiers to produce information on glacier location, extent, facies and character (Hall and Martinez, 1985). Investigations have also shown that detailed information on glacier geomorphology, structure and process rates can be obtained from such data, although issues involving anisotropic reflection, digital elevation model (DEM) extraction, spatial analysis and advanced pattern recognition must be addressed for fully operational assessment and monitoring (Bishop and others, 1995, 1998a, b, 1999). Many of these challenges will require next-generation satellite sensors and data, algorithm and model development, advanced computation, and integrated scientific investigations in order to improve.
panchromatic stereo pair was acquired on 27 and 28 October 1996 over the Nanga Parbat massif, western Himalaya (Fig. 1). Two DEMs were produced: one using our DEM extraction algorithm and one by the SPOT Data Corporation (Bishop and others, 1998a). Both panchromatic and multispectral SPOT imagery were used to extract information for various glaciers on Nanga Parbat, as well as Batura Glacier (Fig. 1). All imagery was ortho-rectified where appropriate to reduce registration error, and radiometrically calibrated to units of radiance (W m⁻² sr⁻¹ λ⁻¹). An atmospheric correction was not applied, as its influence is minimal given the high altitude and the purpose of this research. Spectral variability caused by extreme mountainous terrain and variable land cover (Justice and Holben, 1979; Smith and others, 1980; Hugl and Frei, 1983), however, does require an anisotropic reflection correction for accurate interpretation and subsequent analysis (Bishop and others, 1998a, b, 1999).

Monitoring the cryosphere from space involves producing information about glacier mass balance, spatial extent, terminus location and glacier facies, so that a variety of processes can be studied. To date, automatic processing to accurately map glaciers is problematic, because of issues of spectral variability and the limitations of traditional supervised and unsupervised statistical brute-force classification algorithms. To determine the potential for automated analysis of glaciers, we examined: (1) DEM extraction and geomorphometric analysis to assist in glacier-extent mapping; (2) spatial analysis to characterize glaciers with geomorphic criteria; and (3) pattern-recognition approaches for mapping supraglacial characteristics.

The boundaries of debris-covered glaciers are difficult to detect with conventional multispectral analysis, but accurate determinations are possible with topographic data. A morphological operator can locate in a DEM elongated V-shaped features (large, uniaxial-positive, second derivative) that are characteristic of glacier edges. Such features occur either where the glacier meets a rising valley or moraine wall, or where the glacier surface drops down to the valley floor. At each location of a V-shape in the DEM, the V’s strength and orientation is determined and connected along similar orientations. Alternatively, drainage networks that tend to flow alongside glaciers to join at the terminus

METHODOLOGY

A Système probatoire pour l’observation de la terre (SPOT)
RESULTS AND DISCUSSION

DEM extraction and geomorphometry

We have processed both SPOT cross-track stereo data (eight-bit data with a base-to-height ratio of 0.6) acquired over the Nanga Parbat Himalaya, and Japanese Earth Resources Satellite (JERS-1) along-track stereo data (six-bit data with a base-to-height ratio of 0.3) acquired over Alaska. Even though neither of these datasets adequately tests our parallax algorithm for the data types that will be acquired from the imminent ASTER system (eight-bit stereo data with a 0.6 base-to-height ratio along track), we have produced a preliminary DEM comparison between our derived results and those from Bishop and others (1998a).

The area of comparison covers a 100 km² region centered close to Raikot Glacier in the Nanga Parbat Himalaya, ranging from ~2800 to 5600 m a.s.l. The SPOT Corporation produced its DEM of this area at 20 m intervals in Transverse Mercator coordinates (Fig. 2). Our preliminary but completely automatic U.S. Geological Survey (USGS) DEM was produced with postings at every pixel in the projection of one of the images (~40.5 m per pixel) (Fig. 3). To provide reasonable comparison, our DEM was processed with a quasi-Gaussian filter (two successive applications of a 3 x 3 low-pass filter) and spatially compressed to a nominal 20 m resolution by extracting alternate pixels. Except for a few high-frequency artifacts and low-frequency projection differences, our DEM compares very favorably with the SPOT product.

The results of geomorphometric analyses have provided new insights into the complex interrelationships between tectonics, denudation and topography. The topography at Nanga Parbat is heavily glacierized and has been significantly influenced by glacial advances, which decreased local relief to produce low slope angles. Such minimum angles at intermediate altitudes represent erosion by warm-based glaciers, and deposition of hummocky moraine. Moraines at various altitudes show the great extent of ice formerly emanating from the mountain. DEM mapping and dating by cosmogenic isotope exposure ages provided temporal control and indicated that, although several glacial advances of >100 kyr are known from tills and glaciolacustrine sediments, much of the modern landscape is dominated by a glacial heritage from the late Pleistocene and early Holocene. Hyspometric and slope analysis reveal that glaciation at Nanga Parbat was far more extensive in the past and played a significant role in the mass flux of sediment.

Assessment of denudation in the Nanga Parbat Himalaya (Shroder and others, 1989, 1999; Bishop and others, 1998a; Bishop and Shroder, 2000) has been a paramount objective and has focused upon the primary roles of mass movement, fluvial erosion, catastrophic flood flushing and glaciation. Evidence exists for at least 5–6 major episodes of glaciation.
in the late Quaternary (Shroder and others, 1989, 1993; Shroder and Bishop, 2000). The four most recent include the Goraksok, which is perhaps equivalent to the Yuzn (~139 Kyr) of Derbyshire and others (1984), the so-called High Moraine (50–65 K^B^e^r^, 1He^r^) at Bezer Gali and numerous other places on Nanga Parbat, possibly the Drang (34–38 K^B^e^r^) and the Neoglaclial (9–5 K^B^e^r^). The timing of these glaciations is largely asynchronous with the standard chronologies of the Northern Hemisphere (personal communication from W.M. Phillips, 1999), and strongly suggests forcing by the southwest Asian monsoon and the Southern Oscillation. We used satellite imagery and geomorphometric analysis to locate high erosional and depositional terraces associated with some of these glacial expansions, in order to assess and map former glacier-valley sides and bottoms, from which to calculate postglacial incision rates.

Anisotropic reflectance correction

Variable geomorphology and land cover cause anisotropic reflection that limits the usefulness of satellite imagery. Examination of the near-infrared region of the spectrum for the Rakot basin on the north side of Nanga Parbat demonstrates the influence of topography on satellite imagery, in that high variability of spectral reflectance is characteristic (Fig. 4). A vertical relief of 7 km over 21 km horizontal in the basin with a solar elevation of 72.1° and an azimuth of 127.0° contributes to low-frequency, reflectance variability throughout this subscene. The geomorphometry of the basin is highly influenced by pervasive past glaciation (Bishop and Shroder, 2000), present-day glacialization, large- and small-scale mass movement and deep fluvial incision that produce additional spectral variability superimposed on the low-frequency variation.

The results of use of the standard Lambertian model show that reflectance variations caused by topography are reduced, although artifacts of the normalization process are clearly present (Fig. 5). The model appears to produce reasonable results in areas that do not exhibit steep slopes, but overcorrects in areas of steep slopes, which would cause problems for mapping alpine snow cover and steep glaciers. Moreover, the assumptions of the Lambertian model are known to be invalid in these environments, and the model does not take into consideration anisotropic reflectance due to land cover.

The non-Lambertian model, with global Minnaert constants, produced images with fewer artifacts caused by overcorrection (Bishop and others, 1998a). Colby and Keating (1998) have also recognized that the non-Lambertian model is preferable to the Lambertian model in mountain environments for producing accurate land-cover classifications. Nevertheless, the use of global Minnaert constants does not effectively address the issue of anisotropic reflectance due to land cover, and can result in information compression. Our results indicate most effective application if multiple Minnaert constants are calculated appropriately and applied.

Corrected imagery has been used to enable accurate mapping of snow cover and the identification of former glacier-valley sides and bottoms. For example, the Rupal valley on the south side of Nanga Parbat generated large ice streams that descended throughout the Astor valley at least three times in the late Pleistocene, and part-way down in the early Holocene. Our satellite-image processing was especially helpful in discovering remnant linear belts of glaciofluvial sediment deposition on ridges up to ~1 km vertically above Goraksok in the Astor River valley. These well-sorted sands and gravels, of probable Drang age equivalency, were originally deposited in ice-contact kame terraces, but are now eroded almost beyond recognition because of the prevailing strong incision rates. Similar determination of location and altitude of 15 glacial erosion terraces around Nanga Parbat has enabled determination of general rates of incision of 22 ±11 cm a⁻¹ (Shroder and Bishop, 2000). In the absence of high-quality topographic maps in areas of such profound relief, processing of satellite imagery enabled determination of some of the most rapid such rates in the world.

Glacier feature detection and mapping

Results of automated mapping of glacier boundaries using topographic information are encouraging (Fig. 6). Drainage lines closely follow the lateral edges of the glacier, and at the glacier terminus the two lateral drainage lines wrap around the glacier snout and converge. These lines are only close approximations of the actual glacier boundaries; refinements are made by applying the V-groove operator and adjusting the locations of the drainage lines to correspond with the topographic break that is characteristic of glacier boundaries. While the method does not yet yield reliable glacier boundaries for all glacier conditions, it is improving rapidly and has potential for operational applications related to estimating the accumulation-area ratio (AAR).

Local spectral variability on glaciers is determined by ice structure, glacier topography and facies, ablation rates, debris loads and ice-surface velocity vectors. Consequently,
one might expect texture patterns of satellite images to be of value in mapping glaciers and assessing supraglacial features such as seracs, ogives, reticulated ice hills, ice cliffs and supraglacial fluvial action. Visual interpretation of SPOT panchromatic data of large and small glaciers in northern Pakistan reveals unique texture patterns associated with ice structure and supraglacial features (Bishop and others, 1995). Quantitative characterization and differentiation of these patterns can be used for glacier mapping. Results for Batura Glacier suggest that semivariogram analysis does have potential for mapping, although caution is advised in spatial sampling and interpretation.

Most of our measured semivariograms exhibited a classic form, although several representing ogives and related reticulated ice hills had periodic fluctuations at larger sample lag distances (multifrequency form). For ogives the transects were selected based upon the relative amount of debris load and the definition and spacing of the features. The semivariograms exhibiting a well-defined multifrequency form represent those locations on the glacier where the debris load is relatively low and the ogives well defined (Fig. 7). The difference in spacing of ogives is reflected in the periodicity of the semivariance with scale. For example, the largest distance from ogive to ogive was associated with transect 4. Comparison of semivariograms (transects 1 and 4) indicates that an increase in the frequency of periodicity is associated with closely spaced ogives. In addition, an increase in the presence of debris load masks the periodicity (e.g. transects 2 and 3).

Examination of the height of semivariograms indicated that differences in spectral variability exist for supraglacial features. As expected, relatively large semivariances were associated with seracs, ogives and the reticulated ice hills resulting from the melting of ogives (Fig. 8), whereas relatively low semivariances were associated with medial, debris-covered parts of glaciers. Ogives and reticulated ice hills exhibited the greatest spectral variability, with S^2 values of > 30 at scales of > 50 m. Seracs had S^2 values near 30 at scales of > 100 m, while debris-covered classes exhibited the lowest spectral variability, with S^2 values of < 30 across all scales. Collectively these results indicate that the spatial spectral patterns in satellite imagery can be exploited and used for mapping detailed characteristics of glacier surfaces.

We tested the utility of artificial neural networks for mapping glaciers at Nanga Parbat (Bishop and others, 1999). We empirically determined our artificial neural network (ANN) structure and training parameters. The selection of the number of hidden nodes was based upon the need for generalization. During early training efforts we set a learning rate and a momentum rate both at 0.6, but we found that this combination did not allow ANN convergence. We therefore lowered the learning rate to 0.2 and...
found that each ANN would converge with a system-error tolerance of 0.05.

Training time varied depending upon the complexity of
the glacier reflectance patterns. For example, simple, low-
frequency, spectral variation associated with glacier surface
variation required little training time. Conversely, more
iterations were required to recognize spectral patterns
related to debris-load variations. ANN training time was
greatest for the most complex glacier surfaces.

Glacier feature detection and mapping is fundamental
for obtaining information on mass balance and glacier
demodulation. In the Himalaya, mass-balance data are available
for very few glaciers due to hazards and logistics. Consequently,
estimates are required, using satellite measurements com-
bined with field data, to determine the relationships between
the AAR and the equilibrium-line altitude (ELA). In this
way, remote-sensing and field-based studies can be inte-
grated. For example, Kulkarni (1992) utilized AAR and
ELA methods to estimate mass balance in the Himalaya. He
found strong correlations between the AAR and ELA
and mass-balance data on Gara and Gor-Garang Glaciers
in India. Results indicate that an AAR value of 0.44 may
correspond to a zero mass balance. Furthermore, even
though poor correlations, as determined by algorithms and
methods used to estimate the AAR and ELA, may limit the
utility to accurately estimate mass balance, trends in mass
balance may be obtained where field data are non-existent.

Further work on the integration of field data and satellite
data is warranted to better understand the response of
Himalayan glaciers to climate change.

Remote-sensing investigations have contributed to our
understanding of transport of glacier sediment and glacier
demodulation. Research in texture analysis and pattern recognition
has enabled the production of accurate maps portraying supra-
glacial features and debris-load characteristics (Bishop
and others, 1995, 1999b). This information has the potential to be
used to produce regional demodulation estimates. Currently, the
magnitude and spatial variability of glacier demodulation in the
Himalaya is not well known. Field-based studies indicate that
glacier demodulation at Nanga Parbat can be as high as 46–
69 mm a⁻¹ (Gardner and Jones, 1993), although remote-sen-
sing and field-based studies indicate that glacier demodulation
rates are highly variable at Nanga Parbat due to the spatial
and temporal variability of glacier velocities, episodic, gla-
cier-meltwater blockages and outbursts and highly variable
sediment-transfer efficiencies (Shroder and others, 2000).

SUMMARY AND CONCLUSIONS

In sensitive high-altitude and high-latitude environments, the
remote-sensing science and technology of the GLIMS project
is required to map snow and ice distributions, and extract
quantitative information. To accomplish this, operational
models, algorithms and software must be available to the
geoscience community. Specific remote-sensing problems
and issues must also be effectively addressed.

We have demonstrated that DEM extraction, anisotro-
pic reflectance and glacier-mapping issues can be effectively
addressed by using remote-sensing models and new algo-
rithms. Collectively our results indicate that alpine glaciers
in the western Himalaya exhibit unique spatial, spectral
glaciomorphometric patterns that can be exploited by
various models and algorithms to produce accurate infor-
mation regarding glacier extent, supra-glacial features and
glacial geomorphology. The integration of spectral, spatial
glaciomorphometric features, coupled with advanced pat-
tern-recognition approaches, should enable accurate char-
acterization of debris-covered glaciers in high Asia.

The challenge will be the development of integrated ap-
proaches to analysis, such that scientific knowledge and ad-
vanced technology produce reliable information from
satellite data for the scientific community. Remote sensing
and geographic information system (GIS) technology and
research have already provided new insights into the work-
ings of the geodynamics of the Nanga Parbat region (Bishop
and others, 1999a). Similar analysis, which will be a part of
the GLIMS project, should help scientists better understand
and monitor glaciers.

ACKNOWLEDGEMENTS

We would like to thank C. Reed, J. Flocken, A. Stoyen, P. Ng,
P. Craiger and J. Olsenholler at the University of Nebraska at
Omaha, and K. Mullins at the USGS, Flagstaff, for their
tremendous support.

REFERENCES

Bishop, M. P. and J. F. Shroder, Jr. 2000. Remote sensing and geomorpho-
metric analysis for assessing topographic complexity and erosion
dynamics in the western Himalaya. In Asif Khan, M., M. Qasim Jan,
P. J. Treloar and M. P. Searle, eds. Tectonics of the Nanga Parbat Synztes
(A Special Publication 190).

analysis for producing supra-glacial debris-load estimates for Batura

Bishop, M. P., J. F. Shroder, Jr, Y.V. Sloan, L. Copland and J. D. Colby.
1999a. Remote sensing and GIS technology for studying lithospheric

Bishop, M. P., J. F. Shroder, Jr, B. L. Hickman and L. Copland. 1999b. Scale
dependent analysis of satellite imagery for characterization of glacier

satellite imagery and neural networks for information extraction in a

Colby, J. D. and P. L. Keating. 1998. Land cover classification using Landsat
TM imagery in the tropical highlands: the influence of anisotropic

glacial history of the Hunza valley, Karakoram mountains, Pakistan. In
Miller, K. J., ed. The International Karakoram Project. Proceedings of the Inter-
456–495.

Hanover, NH, U.S. Army Corps of Engineers. Cold Regions Research
and Engineering Laboratory.

Gardner, J. S. and N. K. Jones. 1993. Sediment transport and yield at the
ed. Himalayas to the arctic: geology, geomorphology and the Quaternary.

Goudie, A. S. and 10 others. 1984. The geomorphology of the Hunza valley,
Karakoram mountains, Pakistan. In Miller, K. J., ed. The International
Karakoram Project. Proceedings of the International Conference Vol. 2 Cambridge,

and New York, Chapman and Hall Ltd.

glaciomorphology from Hutton to Hack. Cambridge, MA, Unwin-Hyman, 165–
203. (Binghamton Symposia in Geomorphology, International Series 19)

Hewitt, K. and G. J. Young. 1990. Snow and Ice Hydrology Project: upper Indus
basin. Final report and hydrology manual. Waterloo, Ont., Wilfrid Laurier
University, Cold Regions Research Centre for Government of Pakistan,
Hugh, H. and W. Frei. 1983. Understanding anisotropic reflectance in

Justice, C. O. and B. Hoffn. 1979. Examination of Lambertian and non-
Lambertian models for simulating the topographic effect on remotely