Emissions and Photochemistry of Oxygenated VOCs in the Outflow from Urban Centers in the Northeastern U.S.

Joost de Gouw & Carsten Warneke

Chemical Sciences Division
NOAA Aeronomy Laboratory

and

NOAA Earth System Research Laboratory

and

CIRES, University of Colorado

Boulder, Colorado

Per October 1st 2005
This talk: focus on evolution of VOCs in urban plumes
VOC Measurements

PTR-MS = proton-transfer-reaction mass spectrometry

14 VOC species

1 Data point every 17 s

Detection limit ~20-100 pptv

Inter-compared during ICARTT with WAS & NASA DC-8

[de Gouw et al., JGR 2003]
Example of Young Urban Plume: July 20
Enhancement Ratios

= \frac{\Delta \text{VOC}}{\Delta \text{CO}}

= Slopes of the scatter plots

This work: describe $\frac{\Delta \text{VOC}}{\Delta \text{CO}}$ vs. transport time for 59 urban plumes sampled from the P3
Example of Aged Urban Plume: July 22

- Benzene
- Toluene
- CO
- Acetone
- Acetaldehyde
Air Mass Origin: FLEXPART Model

FLEXPART = Lagrangian transport model:
column residence time of 40000 particle back trajectories

Location of the
NOAA WP-3

[Stohl et al., JGR 2003]
Air Mass Origin: FLEXPART Model

Footprint = BL residence time of particle back trajectories

Location of the NOAA WP-3 [Stohl et al., JGR 2003]

Footprint = BL residence time of particle back trajectories [Stohl et al., JGR 2003]
Air Mass Origin: FLEXPART Model

CO source contribution = footprint × emissions inventory

Source region is centered around New York City

[Stohl et al., JGR 2003]
Locations of the Urban Plumes

- All plumes observed at low altitudes (200-2000 m)

- All plumes observed at low altitudes (200-2000 m)
Evolution of Aromatic VOCs

- Toluene more reactive than benzene
- Toluene high near New York and Boston
- Benzene more widespread
Evolution of Oxygenated VOCs

- Acetone produced after 2-3 days
- Acetaldehyde very reactive, yet fairly widespread

⇒ efficient production
Evolution of Oxygenated VOCs in Urban Air

- Average description of data from NEAQS 2002
- Transport time estimated from hydrocarbon ratios and an average $[\text{OH}]$

[de Gouw et al., JGR 2005]

Does this description hold up for the urban plumes observed in this work?
Evolution of Oxygenated VOCs in Urban Air

- Benzene
- Toluene
- Acetone
- Acetaldehyde

- ICARTT 2004
- NEAQS 2002
- Direct emissions

Transport time (days)
Evolution of Oxygenated VOCs in Urban Air

- Methanol
- Acetic Acid
- Methyl Ethyl Ketone

Transport time (days)

Data sources:
- ICARTT 2004
- NEAQS 2002
- Direct emissions
Reasons for the Scatter in the Data
- Transport time ≠ photochemical age (OH is not constant!)
- In-homogeneity of emission ratios
- Biogenic sources of oxygenated VOCs

Further Complicating Factors
- Ocean uptake of oxygenated VOCs?

Sharp decreases of acetone below 400 m
Urban emissions of oxygenated VOCs are much larger than emissions from automobiles.

What are the sources?

Urban emissions of oxygenated VOCs are much larger than emissions from automobiles.

What are the sources?
Conclusions

- Described the evolution of VOCs in urban plumes from the northeastern U.S.

- Empirical equations from NEAQS 2002 describe significant part of the variability observed in 2004

- Urban emissions of oxygenated VOCs are large, but do not come from automobiles

- Observed evidence for an ocean sink of oxygenated VOCs
Acknowledgements:

John Holloway
Andreas Stohl
Andy Neuman
Fred Fehsenfeld, Gerd Hübler, Tom Ryerson, Donna Sueper, Michael Trainer
Plus everybody else who collaborated!