Determination of Isoprene Emissions from Aircraft Measurements During 4 Campaigns and Comparison with Emission Inventories

Carsten Warneke and Joost de Gouw

NOAA Earth System Research Laboratory
and
CIRES, University of Colorado
Boulder, Colorado

Compare measurements versus inventories using:
1. Mixed-boundary layer method
2. Flexpart model
Inventories used: BEIS3.12 and 3.13, MEGAN and Wiedinmyer et al. for Texas
Top-Down Evaluation of Biogenic VOC Inventories

Different methods have been used previously:

1. Eddy-covariance flux measurements
e.g. Guenther and Hills [JGR 1998]
 very accurate, but only 1 location

2. Using satellite-derived formaldehyde
e.g. Palmer et al. [JGR 2006]
 large scale, but indirect

3. Regional chemistry models vs. measurements
e.g. Mueller et al. [ACP 2008]
 emissions, meteorology and chemistry all have to be correct

Here: use airborne measurements to estimate isoprene emissions at the aircraft location and compare with inventories
NOAA Aircraft Measurements of Biogenic VOCs in the U.S.

VOC measurements:
- Canister sampling
- Airborne GC
- Proton-Transfer Reaction Mass Spectrometry
Approach 1: Mixed Boundary Layer Method

1. Estimate Emissions from Measurements
 - assume well-mixed PBL
 - PBL height from aircraft data
 - estimate emissions
 - estimate OH \Rightarrow VOC lifetime

2. Calculate Emissions from Inventory
 - Temperature and PAR from aircraft data

3. Compare Measurements to Inventories

Inventories used in this work:
- BEIS3.12
- BEIS3.13
- WM2001 [Wiedinmyer, AE 2001] (TX only)
- MEGAN [Guenther, ACP 2006]
Step 1: Estimate Emissions from Measurements

isoprene emission - $F_e = \text{measured concentration} \times BL_{\text{height}} \times OH \times k_{OH}$

- $F_e = \text{entrainment flux}$
- BL_{height} from aircraft data
- OH from parameterization using j_{O_3}, j_{NO2}, and NO_2

 [Ehhalt, JGR 2000]

- Uncertainty: -50%, +100%
Step 2: Calculate Emissions from Inventory - BEIS

isoprene emission = base emission × \(c_t \times c_l \)

- \(c_t \) = temperature factor
 temperature from aircraft

- \(c_l \) = light factor
 PAR from aircraft using leaf-area index (LAI)
Step 2: Calculate Emissions from Inventory - MEGAN

isoprene emission = base emission ×

\[\gamma_t \times \gamma_l \times \gamma_{LAI} \times \gamma_{age} \]

- \(\gamma_t \) = temperature factor from aircraft data
- \(\gamma_l \) = light factor from aircraft data
- \(\gamma_{LAI} \) = leaf-area index factor
- \(\gamma_{age} \) = leaf-age factor from ECMWF past 15-day weather
Differences Between Inventories

Actual emissions along flight tracks:

- BEIS 3.13 = 0.67 \times BEIS 3.12
different light parameterization

- MEGAN = 1.79 \times BEIS 3.12
different base emissions

- WM2001 = 0.72 \times BEIS 3.12
Step 3: Compare Measurements to Inventories

- Overall agreement within factor of ~2
- MEGAN higher than most measurements; BEIS 3.13 lower
- Texas: higher emissions in 2006 than in 2000
Approach 2: Calculate Isoprene with FLEXPART - BEIS 3.12

FLEXPART
- Lagrangian transport model [Stohl, JGR 2003]:
- ECMWF meteorology
- No chemistry: remove isoprene after 1 hour of transport

BEIS 3.12
- 0.15° x 0.15° resolution
- Temperature and light from ECMWF
Approach 2: Calculate Isoprene with FLEXPART - BEIS 3.12

Example: September 16, 2006, over NE Texas

- Model releases 40,000 particle back-trajectories from each measurement location
- Footprint is BL residence time of all particles
- Isoprene concentration = footprint × emissions from BEIS 3.12
- Isoprene removed after 1 hour of transport
FLEXPART - BEIS 3.12 vs. Measured Isoprene

Example: September 16, 2006, over NE Texas

➢ Agreement within factor of ~2
Texas: good agreement
Northeastern U.S.: FLEXPART $\approx 2 \times$ measured data

Slope was 0.98 in previous method
Slope was 1.65 in previous method
Summary

1. Two methods were used to compare airborne measurements of isoprene directly with inventories: overall agreement within factor of ~2 is found in both methods.

2. For all areas: MEGAN > BEIS 3.12 > BEIS 3.13

No time to show:

3. Larger uncertainties for monoterpenes

4. Method allows identification of local differences e.g. discontinuity at U.S.-Canadian border in BEIS TX hotspot between Dallas and Houston
Acknowledgements

<table>
<thead>
<tr>
<th>Name</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lori Del Negro</td>
<td>PTR-MS</td>
</tr>
<tr>
<td>Stu McKeen</td>
<td>BEIS</td>
</tr>
<tr>
<td>Alex Guenther</td>
<td>MEGAN</td>
</tr>
<tr>
<td>Jerome Brioude</td>
<td>FLEXPART</td>
</tr>
<tr>
<td>Harald Stark</td>
<td>radiation measurements</td>
</tr>
<tr>
<td>Tom Ryerson</td>
<td>NO$_2$</td>
</tr>
<tr>
<td>Bill Kuster, Paul Goldan</td>
<td>SOS GC data</td>
</tr>
</tbody>
</table>

Fred Fehsenfeld, Jim Meagher, Dave Parrish, Michael Trainer