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Waves in the Presence of an Ionosphere with Horizontal Gra-
dients, PartI: Ray Theory for Lossy Media. Part II: Diffrac-
tion by the Earth.

Thesis directed by Professor William Rense

To i):'ediét communication conditions between a giveﬁ transmit-
ter and receiver, or to use radio waves to measure ionospheric
characteristics, it is desirable to calculate the effect of the earth
and ionosphere on radio waves. The difficulty of obtaining a formal
solution of Maxwell's equations with the appropriate boundary and
initial conditions necessitates using approximate methods or restric-
ting the scope of the problem. Solutions have been found for a
sharply bounded concentric ionosphere and several non-concentric
extensions to that model, but no practical method is available for
treating an ionosphere which arbitrarily varies horizontally and
vertically.

Although geometrical optics (ray theory) can be applied to a
medium which varies arbitrarily, it has not previously been used
satisfactorily to calculate reflection coefficients below 100 kHz,

The diffractive corrections applied to ray theory to account for the
diffraction of radio waves by the earth have been unable to account
for the diffraction encountered in multihop propagation between the

earth and the ionosphere.



| Th1s thesis presents an extension of ray theory which satisfactorily
calculates reflection of LF (30 to 300 kHz) radio waves from the iono-

sphere. This extension includes ionospheric losses in determining the

717‘a37r rpath b}; using tl'-lé compl?e;{ refracfive indek (instead of just the real
part) in Snell's law. The effect of losses in the D region is very im-
portant in determining the path of LF radio waves. Although the re-
sulting ray paths, being in complex space, have less physical interpre-
tation, they give accurate results. An accompanying approximation
which compensates for the ray's missing the receiver is essential for
ray tracing in complex space, and would also be very useful in ordi-
nary ray tracing.

J. B. Keller's quasi-optical ""geometrical fheory of dif,frag’rtriwc;ril”
represents diffraction by the earth by rays which travel along the
ground. These diffracted rays, which are ordinary ground wave
modes excited by a sky wave, can be represented more accurately
by rays which travel at certain complex heights above the ground.

By taking into account all the rays diffracted by the earth and reflec-
ted from the ionosphere, it is possible to calculate satisfactorily
multi-hop propagation between the earth and ionosphere. Regarding
caustics as equivalent to sources permits calculating the excitation
of the ground wave by a caustic in the incident field (which nearly

always occurs in waves reflected from the ionosphere).



Even for a concentric ionosphere, the calculations are simpli-
fied by using ray tracing in complex space and the geometrical
theory of diffraction.

This abstract is approved as to form and content. I recommend its
publication.

Signed

Faculty member in charge of dissertation
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1. Introduction

Successful calculation of the terrestrial propagation of
radio waves began 50 years ago when Watson (1918) calculated the
propagation of radio waves around the earth by assuming the earth
was surrounded by free space, He converted the rigorous zonal
harmonic series to a contour integral using the now well-known
Watson tranéfgrr;ation and evaluated the iﬁtegral by summing
residues. Since his calculations gave much weaker signal
strengths than observed at long distances, he concluded that this
model could not account for terrestrial propagation of radiowaves.
The next year, Watson (1919) assumed a homogeneous conducting
layer concentric with the earth in making calculations. This
time, the calculations agreed qualitatively with measurements,
supporting the hypothesis of Heavyside of an ionized layer above
the earth which could reflect radio waves,

Around 1950, interest in calculating terrestrial radio wave
propagation seemed to increase, perhaps because of the availability
of computers making more complicated calculations practical,
Bremmer (1949) gives a good background of the subject at that
time., Johler and Berry (1962) presented a practical computer
method for calculating the solution using the original zonal
harmonics. However, the most popular method was still the
residue series of Watson (1919), but interpreted as wave guide
modes (Wait, 1960, 1962b, c; Johler and Berry, 1964).

Bremmer (1949, page 3&) indicates a method of represent-
ing the field as a sum of terms separated according to the number
of ionospheric reflections. Each term thus represents a wave
which has reflected from the ionosphere a certain number of times,

similar to geometrical optical rays, except that they are full-wave



sol>utions 1nclud1ng diffraction by the earth., Wait (1961) developed
this method in more detail, giving explicit expressions for the
terms, Berry (1964c) indicated how this method could be used in
making computer calculations. He identified a term as an iono-
spheric reflection coefficient, and pointed out that it could be re-
placed by a plane wave reflection coefficient calculated from a
continuous ionospheric profile using a full-wave reflection co-
efficient program such as that of Johler and Harper (1962). Thus,
it was possible to separate the calculation into two parts: the
reflection coefficient, and the path integral. Berry and

Chrisman (1965a, b) have calculated values of the path integral as
a function of distance from the transmitter for various ionospheric
heights, frequencies, and ground constants.

Several extensions have been made to this concentric,
sharply-bounded model (Wait, 1967b). Wait (1964a) has allowed
for the case of a non-homogeneous earth by considering a land/sea
boundary. Wait (1962a, 1964b, c,d), Rugg (1967), and others have
taken into account various types of nonconcentric ionospheric _
models at VLF by considering mode conversion in the earth-
ionosphere wave guide.

However, there has been no satisfactory method that allows
for the general case of an ionosphere which varies arbitrarily
with height and horizontal position. The success of ray theory
(geometrical optics) for arbitrarily varying ionospheric models at
HF suggests using ray theory at the lower frequencies also, How-
ever, standard ray theory has not been able to calculate reflection
of the lower frequencies from the ionosphere satisfactorily. The
problem even shows up in a minor form at HF. Titheridge (1967)
showed for vertical incidence, that the error in absorption and
group path by neglecting the contribution of the phase integral

into the complex plane is nearly canceled by using non-deviative



formulas rather than the supposedly more exact expressions. He
did not indicate whether his result might apply to obliqﬁe -
incidence. Booker and Crain (1967) derived a theorem on
absorption, using it to develop a method for calculating reflection

of LF radio waves from a plane stratified medium, but the method

is not as straightforward as standard ray theory.

A second problem is that geometrical optics does not take
diffraction by the earth into account., Wait and Conda (1958, 1959)
added diffraction corrections to geometrical optics to account for dif-
fraction of plane waves into the shadow of the earth, but do not apply
it to the case of sky waves reflected from the ionosphere., The full-
wave solutions of Wait (1961) and Berry (1964c) show that the field of
the mth hop attenuates slower with distance in the shadow than the

groundwave. However, since they do not give a geometrical inter-

pretation of the phenomenon, it is not cleaf how to make the geo=~
metric extension to the nonconcentric case,

Part I of the present work attacks the problem of calculating
reflection from the ionosphere, and shows that including attenua-
tion in addition to phase in calculating ray paths at LF substan-
tially improves the accuracy of reflection coefficients. Consider-

ing both phase and attenuation leads to an extension of Fermat's

principle that uses the complex phase refractive index (instead of

just the real part) to determine ray paths having complex
coordinates. Applying this method of ray tracing in complex
space to a plane wave incident on a plane stratified medium gives
results which agree with the phase integral method, but its
greater generality allows it to apply to a more arbitrary
representation of the ionosphere.

Part II adapts Keller's (1962) geometrical theory of dif-
fraction to calculate the signal strength of rays diffracted by the
earth into its shadow. A diffracted wave can be represented

accurately by a ray which travels at a specific complex height



above the gfound. Includiingi all of the ratys that contribute to the
total field gives the correct attenuation with distance in the shadow.
Comparison with the rigorous solution for a concentric iono-
sphere shows that a caustic in the incident field behaves like a

point source in exciting a ground wave mode,



PART I: RAY THEORY FOR LOSSY MEDIA



2. Introduction to Part I.

Ray theory has long been used as an approximate method for
calculating reflection and refraction of HF radio waves by the
ionosphere, With the abundance of large digital computers, ray
tracing programs have been written to calculate ray paths in the
ionosphere on a fairly routine basis. In most cases ray theory is
a good approximation at HF, and the main area for advancement
is in developing models to realistically represent the important
features of the ionosphere.

So far, however, ray theory has not been successfully applied
at LF and VLF, where two objections to the application exist,
First, the wavelength is longer, so that the ionosphere may change
considerably over a wavelength, and the ''slowly varying'' assump-
tion usually considered necessary for ray theory to hold is thus
invalid. Second, at HF the permittivity of the ionosphere varies
with position and the conductivity is nearly zero, but at LF and VLF
the situation is reversed: the permittivity is approximately that of
free space, and the spatial variation of conductivity determines the
reflection and refraction properties of the ionosphere. That is, the
real part of the phase refractive index is nearly 1, and the imaginary
part varies with position. In physical terms the wavelength is nearly
independent of position, but the attenuation coefficient varies. Thus,
standard ray theory, which is based entirely on the spatial varia-
tion of wavelength, ignores the main properties of the medium at LF
and VLF,

Using the modified ray theory proposed in this paper solves
the second problem by including the effects of attenuation in deter-
mining ray paths. The method's successful calculation of reflec-
tion coefficients for profiles which are not "'slowly varying"

indicates that such a criterion is really too restrictive.
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List of Symbols For Partl
A in section 3, a parameter which represents focusing
in section 4, (see fig. 1)

B See fig. 1

C in sections 5 and 6, cos Qg
in section 4, (see fig. 1)

in appendices A and B, V] - Vv °

y

E electric field

Gy transmitting antenna gain factor
Gs - receiving antenna gain factor

N electron density

No, N1, Nz, N3 electron density at heights ho, h;, hz, hs for an
exponential profile (see table 1)

P complex or generalized phase path

PP phase path at points A, B, C of figure 1

P
B’ C

R plane-wave reflection coefficient from a plane strati-
fied ionosphere referred to the height ho

R reflection coefficient from a plane stratified ionosphere
referred to the height 0 for a transmitter-receiver
separation y

S sin®o

v same as Vh

Vh vertical component of the wave normal direction in
appendices A and B, normalized so that Vh2+ VY2 = n”

v horizontal component of the wave normal direction in

Y appendices A and B, normalized so that Vh2+ Vy‘? = n”®
Vo in appendix A, see (A-18)
X normalized electron density, the X in the Appleton-
Y N® Ne?

Hartree formula, equal to -

2
w m€o\w



zZ normalized collision frequency, the Z in the Appleton-
Hartree formula, equal to o

a,a;, ag exponential increase of a collision frequency with
height (see table 2)

b, by, bz, ba exponential decrease of electron density with height
(see table 3)

e charge of the electron

fN plasma frequency, ng = 80.6 x 107N MHz”, for N in
electron/cm®

h height (may be complex)

ho in (23), height defining an exponential refractive
index profile

ho, hi, hs, hs height defining exponential electron density and
collision frequency profiles (see tables 1 and 2)

i V-1

k wave number (propagation constant) of free space,

1t 2
equal to —

log natural logarithm

m mass of the electron

n complex refractive index, equal to Y - iX

ng complex refractive index at the transmitter

ny,np complex refractive index in media 1 and 2

S in appendix A, the real part of V_, defined in (A-27)

otherwise, path length Y
S1583 path length at the endpoints of the ray path
m . :

t in the term e ¥, time; in (A-27) through (A-41), the
imaginary part of V jotherwise, the independent
variable in Hamilton's or Haselgrove's equations

Uo a normalizing factor giving the strength of the trans-

mitting antenna
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My, Mz

a vector pointing in the wave normal direction
(may be complex)

v VJVJ

the jth component of v, normalized so that
Vivj = n® or p°

vector location of a point on the ray path (may be
complex)

vector location of the receiver

jth component of ; (may be complex)

jth component of _);o

the horizontal component of a point on the ray path

(equal * to x3), also the same for the total ray path
(that is, the ground range, which may be complex)

the angle between the ray direction and the wave-

normal direction

exponential decrease of n® with height in an exponential
ionospheric model (see (23))

angle between the wave normal direction and a straight
line connecting a ray path point and the receiver
(see fig. 1)

in e" , an initial condition determining the initial direc-
tion of the ray path in complex space; otherwise,
used to indicate the variation of an integral
(calculus of variations)

permittivity of free space

wavelength in free space

real part of the phase refractive index

real part of the phase refractive index in media 1
and 2



Vo » \)1’

Po

1, @2

Va

10

electron collision frequency

collision frequency at a height hy, hy, hz for an
exponential profile (see table 2)

3.141592654 ,

phase of the reflection coefficient (see (32))
angle of incidence of the ray on the ionosphere

angle of the wave normal with the vertical in
media 1 and 2

imaginary part of the phase refractive index

angular wave frequency

Ne?
1 1 f 1t / = 2T7f
angular plasma frequency, equal to e N




3. Ray Tracing in Complex Space

Ray theory calculates the field of a radio wave at some dis-
tance from a source by integrating along some path (the "'ray
path'') connecting the source with the observation point, Ray
theory gives the radiation field strength at point 2 due to a time

harmonic source at point 1 as

S2 s

P W -i a -
oel tGl Ae 1k§/H costds ks_/x cost ds, (1)

1 2

E=nu

where a is the angle between the ray d1rect1on and the wave
normal direction; u, is the strength of the source; G; is the
transmitting antenna pattern factor, which depends on the direction
in which the ray leaves the transmitter; and G2 is the reeeiving
antenna pattern factor and depends on the ray's angle of arrival at
the receiver, The factor A accounts for focusing and de-
focusing due to convergence and divergence of the rays. It-is
calculated by assuming conservation of energy in a narrow tube of

rays (Keller, 1962). The term

[

fl.l cosGds -1i fxcosO«ds fncosO« ds =P (2)
is called the phase integral (Budden, 1961). The quantity P is
called the generalized or complex phase path. The real part of
P gives the phase of the wave, while the imaginary part gives the

attenuation of the wave due to absorption by the medium.

1

Epstein (1930) and Bremmer (1949, p. 174) mention the possi-
bility of ray paths having complex coordinates that are deter-
mined by the complex form of Snell's law, but do not propose
calculating ray paths in complex space., In fact, Epstein showed
that if the absorption is small the ray path does not differ much
from that existing in the absence of any absorption. However,

Kelso (1964, p. 192) points out that this does not apply at reflection.

11



From the many paths that carry the wave, we must find
those which make the greatest contribution to the field. The
usual criterion for choosing these ray paths is Fermat's

principle (Budden, 1961),

6fHCOSqu =95 Vi dXi = 0, (3)
where (3) uses the summation convention over repeated indices
3
Vi dx; = > v; dx;, . (4)
i=1

-
and v points in the wave normal direction and is normalized

so that

M=V = V& = 5 (5)
where U is the real part of the phase refractive index,

The physical basis for this criterion is wave interference.
Waves within é wavelength of éuch a path will tend to interfere
constructively, whereas waves far from this path will tend to
cancel each other., Application of Fermat's principle to strati-
fied media leads to Snell's law to give the bending going from

medium 1 to medium 2.

My sin®, = MYy sin®y = (6)
For continuously varying media, Fermat's principle leads to
the system of differential equations given by Haselgrove (1954) or

to Hamilton's equations for calculating the ray path. With the

Hamiltonian BT
H=z ——
2

Hamilton's equations beco;rge

B TR |
— dt J avj ) - I )

j=1, 2, 3, - -
dvi _ 2w
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where Xj is a generalized coordinate and vj is a generalized

momentum.

For the choice of independent variable in (7) the generalized

phase path is given by

dP

= 2 iy,
N MR —ip (8)

The mathematical basis for‘ Fermat's principle is the
asymptotic evaluation of integrals. Consider all possible paths
connecting the source with the observation point., According to
Huygen's principle, each of these paths will contribute to the
observed field, and each contribution will have the am of(l).i:fhe
total field will be the sum of these contributions, and, since the
paths vary continuously from one to the next, the sum will involve
an integration over these paths. (Not along these paths; this
integration should not be confused with the phase integral along a

particular path). The integration over the paths can be performed

by the saddle-point method (Budden, 1961). The main point in the

technique is to separate out those terms in the integrand which vary

rapidly with the independent variable (usually exponential terms).
In our case, the integrand is of the form (1), and depends on the

path of integration of the phase integral., If

vy << v, (9)

then the quickly varying term of (1) is

-k | a 10
elkfucos ds . (10)

The saddle-point method chooses the paths making the greatest
contributions to ‘he integral. The condition for choosing those

paths is Fermat's principle, (3).
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However, if (9) is not satisfied, then both exponentials in (1)
must be considered quickly varying, and the saddle-point method

gives

o fnds = o f uds - 18 fxds =0 (1
as the condition which determines the ray path. Notice that (11)
is a complex equation and requires both the real and imaginary

parts to be zero, Thus, (11) gives two conditions for determin-

ing the ray path whereas (3) gives only one, These two conditions

can be satisfied only by allowing the points on the ray path to have

the i'ay path must have both minimum wave interference and
minimum attenuation.

Just as Fermat's principle led to Snell's law and

Haselgr0ve's eciuatidns, (11) leads to an extension of Snell's law
for stratified media,

n; sin®, = ng sin®s, (1z)
and to an extension of Haselgrove's equations for continuously

varying media,

dx. 1(S // an ™
.] = € i v n
dt N aVJ' 7
j=1,2, 3.(13)
dv id on
_J =e Y
dt J

The generalized phase path is now given by

P _ ib
Et—__e ne. (14)

. 6 .
The constant e gives a needed parameter to determine the

initial direction of the ray. fThe v.!'s in (13) are now normalized so
J

that . s S
Vi v, = ot (15)



Although a ray path which is a solution of (13) satisfies (11),
it does not necessarily connect the given source and observation
point, This is the basic inconvenience of ray tracing. To find the
ray path connecting the source and observation point one must use
trial and error. The path may always be started at the source,
This determines the initial values for the Xy Requiring the path
to end at the given observation point puts six conditions on the ray
path (the real and imaginary parts of the three spatial coordinates

at the observation point; the imaginary parts will always be zero).

In making the trial ray paths, one has control of six things ~

when to stop the ray and the following five initial conditions:

15

1-4., The initial values of two of the vj‘s (real and imaginary
parts). Only two of the vj's are independent because
of (15).
5. The constant phase factor &,
This is quite a bit more complicated than the corresponding case
for ray tracing in real space. There are only three conditions on
ray paths in real space (the three coordinates of the observer).
In making trial ray paths in real space, oné chooses the initial
values of two of the vj's and decides when to stop t.he ray. In

practice, however, it is usually sufficient to calculate a few rays

which surround the cbservation point and then interpolate to find
an approximation for the generalized phase path for the ray path
connecting the source with the observation point. Section 4

shows another approximation which often allows one to calculate

the phase integral with only one ray,

4, A Useful Approximation for Ray Paths
Which Miss the Observation Point

The phase integral in (1) should be calculated along a path

that satisfies the generalized Fermat's principle.ﬁl_)"a'nd connects



the source with the observation point, Solutions of (13) -aré"ray
paths that satisfy (11), The ray paths begin at the source if the co-
ordinates of the source are chosen as the initial coordinates of the
ray. The ray will end at the chosen observation point only with a

proper choice of the rest of the initial conditions.

If the initial conditions are such that the ray barely
misses the observation point, an approximate method can be
used to calculate the phase and amplitude at the observation
point. Consider thé situation shown in ﬁgure.l. A ray has entered
the figure in the upper left-hand corner and has stopped at A, a
distance |§o - ;\ from the observation point at C. If the ‘ray were
to continue, it would not intersect the observation point, but would
make its closest approach at B. If the wave fronts in the neigh-
borhood of A, B, and C are nearly plane, then B lies on the same
wave front as C, and the value of the generalized phase path at B
is nearly the same as at C. If n is nearly constant in this neigh-
borhood, then the value of the generalized phase path at B (or C)

is approximately

Po~ Ppw~ PA+n|>?;-3?|cosY. (16)
However, since from (15)

Iv| = = (17)

- . . .
and v gives the wave normal direction,

P ~P, +%7.EF -T)=P

C A - Xj ). (18)

A * Vj (Xoj
The approximation (18) is valid for both ordinary ray tracing

and ray tracing in complex space, where all the quantities except

X, in (18) may be complex. The size of the neighborhood for
which (18) gives accurate results depends on the situation and the

desired accuracy. Again, the approximation depends on Vn and



Figure 1,

Receiver

Geometry of a ray missing the receiver.
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the curvature of the wave fronts being small in the neighborhood
of A, B, and C. For isotropic media, the curvature of the wave

fronts is small when neighboring rays are nearly parallel.

18

5. Application to Calculating Reflection of
Radio Waves from a Plane-Stratified Medium

The following example uses ray tracing in complex space to
calculate analytically the reflection coefficient of radio waves
incident on a plane-stratified medium. For plane waves this
method gives the same reflection coefficient in-this case as
the phase. intégral method (Budden, 1961). This is reasonable
since the -on.ly. difference between the two methods 1s thed
path of integration, which will make no difference if the
integrated function is analytic or if the paths of inte-
gration are topologically equivalent with respect to any
nonanalytic points.

Neglecting the earth's magnetic field, the complex refractive

index of the ionosphere given by the Appleton-Hartree formula is

X
2— - 2
S T/

where X and Z are the normalized electron density and collision
frequency respectively. At LF and VLF, Z >~ 1 during the day,
so that (Wait and Walters, 1963)

X
2~ -i—=. 20
n 1 -1 = (20)

The overall behavior of the lower ionosphere can usually be
approximated by exponential variations of both electron density

and collision frequency with height (Wait and Walters , 1963):

(19)



7 = e-a -hl ,/(/2’1_‘;17
o bk, (22)

From (20), (21), and (22) then,

ne‘ -1 - ie(a.+b)h—(ahl + bhz) -1 - ieB (h-hg) . (23)

The model (23) is advahtagequsibeca‘use exact full-wave 7a{ndﬁray7'
solutions can be found for the reflection of radio waves from

such an ionosphere.

Appendix A integrates (13) and (14) from h = 0 to the point

where. h = 0 again after reflection from the ionospheric model
(23). The result from (A-21) and (A-23) is that the complex phase path

is

N ‘ 1- 2 g2
p = __2_—_2 log o T noC4ngC (24)
;V 1_n02 5 2 o2 B
o1 ~n," S - nOC
and the ground range is
2 _ 2 =2
g = ngsS log Vl n, S +n,C ’ (25)
Bqef 1 -n,°S° 1-n2s® -n,C
where
-ph
no2 = 1-1e0 (26)

and S and C are the sine and cosine respectively of the
(complex) angle of incidence ¢, of the ray on the ionosphere.

However, the phase path (24) corresponds to a measurable
quantity only when the ground range (25) is real. If the real part
of ®, is specified, then requiring y to be real determines the
imaginary part of ®,. Appendix A ¢aleulates the imaginary

part of gy necessary to make y real in the limit of large h,
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(plane waves) and the corre5pondir;g7P and y,ﬁ which fr-o:r-z;-(}x—élls

and (A-36) are

2 2 7iC .

P = 5o (2log2C+ ph, - 2C7) - — (27)
25 ‘

Y' = _FEF ( 2 10g 2C + F-/’ho) . (28)

Appendix B arrives at the same result by using the approximation
of section 4.

The reflection coefficient (the ratio of the downcoming wave at
h=0 a distance vy from the transmitter to the upgoing wave at the

transmitter) is (Budden, 1961, p. 437):

A - o2mi “
. / 1
R =iexp " P Je (29)

The factor 1 outside the eXponenti_é.l in (2‘797) is a Stokes constant
(Budden, 1961) connecting the upgoing and downgoing waves at reflec-
" tion. It can also be interpreted as the phase shift given to the wave
after it has passed through the surface caustic at reflection
(Kouyoumjian, 1965; Lewis, Bleistein, and Ludwig, 1967).

For comparison with other calculations, it is convenient to
calculate the reflection coefficient as the ratio of the downcoming
to the upgoing wave at the same point referred to some level.
The appropriate expression to convert to a reflection coefficient

at the same point referred to the level h, is (Budden, 1961, p. 85)

/\.
R =R exp <-

2T i ,
T (—ysmCPO-ZhO coscpo)>. (30)

Combining (27), (28), (29), and (30) gives

. 211 4C mic ™~
R—lexp<->\ CB (log 2C - 1) - 5= ), (31)
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or
R=[Rle ", (32) .
where
21 C -
IR|= e (- S5 (33)
ﬂ 2T 4C .
QQ--Z--T “_Ff— <10g2C-1/. (34)

We can compare this with the reflection coefficient calculated

by standard ray theory. Appendix C shows that when one applies
standard ray theory to this same ionospheric profile (23), the
ray is not reflected, but in fact turns up because the real part
of the refractive index increases with height. Thus, in this case,
standard ray theory gives a completely inaccurate reflection
coefficient of zero. _ o . e

6. Analytical Comparison with a Full-Wave Solution

The full-wave solution for the amplitude and phase of the
reflection coefficient for horizontally polarized waves incident at
an angle @, on the ionospheric model (23) (referred to the level

hy) is (Wait and Walters, 1963; Budden, 1961, p, 357)

|R| - exp <—>%ggc > (35)

_ 87 C 2m -, oamC N
(:p-T'I'-l-—-'—)\p 10g <>\F&>+Zargl_\—1—x§—-—}/!_}. (36)

The complex ray theory solution given by section 5 which

agrees with that given by Budden's phase integral method, is
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|R| = exp <- 2;[3 < ) . (37)
cpz_z_-—%—q <10g2C—l:\t_ (38)

As Budden (1961) points out, the magnitude agrees exactly with the
full wave solution, and calculation shows that the phase is in error
by at most /2, and that this error approaches 0 as C/(Ag)

increases.

7. Numerical Comparison with Full-Wave Solutions

To show that complex ray theory gives accurate results,
we compare reflection coefficients calculated by complex ray
theory with those calculated by a full-wave method for plane
waves incident on a plane stratified medium whose index of
refraction is given by (19) for the electron density and collision
frequency profiles shown in figures 2 and 3.

The complex ray solutions are found by numerically
integrating (13) and (14) from h = 0 back again to h =0 after
reflection and applying the approximation of section 4 to correct
for the endpoint's being in complex space. The transmitter is
far enough below the reflection heighf for these pointi—soru-rcer
solutions to approximate plane-wave solutions.

The full-wave solutions are found using the method of Johler
and Harper (1962), i.e., by approximating the medium by many
thin homogeneous slabs (ten per free space wavelength) and
finding a solution to Maxwell's equations which satisfies all the
boundary conditions.

The three electron density profiles used in the comparisons
are described in table 1 and shown in figure 2. The two
collision frequency profiles are described in table 2 and shown

in figure 3.
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Figure 2. Electron density profiles used in the comparisons.
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‘Table 2. conision frequency profiles used in the comparison

exponential profile

v = vy o™ (hoho)

3. 65 x 10% collisions/sec, ho = 100 km, a = . 148 km

<
H

This profile is an exponential approximation to the measurements

reported by Belrose and Burke (1964).

double exponential profile

Viv, e (R L -2 (behy)

<
il

3. 65 x 10* collisions/sec, h; = 100 km, a; =. 148 km™*

30 collisions/sec, hy = 140 km, ag = . 0183 km

<
1l

The lower part of this profile is the same as the single exponential
profile above. The upper part is an exponential approximation to the

140 km through 300 km section of a theoretical collision frequency

profile based on a standard atmosphere (Handbook of Geophysics and

“Space Environments, 1965, p. 2-5).
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~ Exponential Electron Density Profile, Exponential Collision
Frequency Profile,

If both the electroﬁideﬂsiit;rz;?collisiOn frequency profiles
are exponential, then the reflection coefficients should be those
given by (35) and (36) for the horizontal polarization full-wave
solution and (37) and (38) for the complex ray solution. The
numerical calculations show that they are (for the cases where
Z >> 1). Figure 4 shows the amplitude as a function of fre-
quency for an angle of incidence of 60 degrees for both hori-
zontal and vertical polarization full-wave solutions and for the
complex ray solutions (marked geometrical optics). To the left
of the absorption band Z > 1, 'and to the right Z < 1. Notice that
the ray solutions agree with the horizontal polarization full-
wave solutions for all frequencies and differ from the vertical

polarization solutions only below 30 kHz, and then by at most 7 dB.

Figure 5 shows the phase difference between the reflection
coefficient calculated with complex ray theory, and the full wave
horizontal and vertical polarization solutions as a function of fre-
quency from 1 kHz through 10 MHz. Notice that the phase error
for vertical polarization is about 210 degrees at 1 kHz, decreases
to 30 degrees at 30 kHz, and becomes negligible before entering
the absorption band at 100 kHz. The error for horizontal polar-

ization is much less.

7 Exponential Collision Frequency Profile, Triple
Exponential D-region Profile

This comparison tests the sensitivity of the accuracy of the

complex ray method to bends in the electron density profile. Fig-

‘ure 6 shows the amplitude of the reflection coefficient Ior an angle

of incidence of 60° as a function of frequency from 1 kHz
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Figure 4. Comparison of ray theory with full-wave theory;

amplitude of the reflection coefficient for an angle
of incidence of 60°, exponential electron density
and collision frequency profiles.
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quency profile.
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through 100 kHz for both horizontal and vertical polarization full -

wave solutions and for the complex ray solutions. The behavior

is essentially the same as for the exponential electron density

profile,
Figure 7 shows the phase errors for the same case. Again,

_the behavior is similar to the previous case.

Triple Exponential Daytime Electron Density Profile,
Double Exponential Collision Frequency Profile

This electron density profile represents a typical daytime iono="

“sphere having definite E and K layers, but no structure in

the D region. This collision frequency profile, which is made

up of two exponential segments, is meant to approximate a typ-

ical collision frequency profile with no fine structure. Figures 8

and 9 show the amplitude of the reflection coefficient as a function
of frequency for angles of incidence of 0° (normal incidence) and
60°. The behavior is essentially like that of the other two cases,
except that there is no difference between the amplitudes of the
reflection coefficient for horizontal and vertical polarization at
normal incidence. Figures 10 and 11 show the difference in phase

of the complex ray solutions and the full wave solution for hori-

zontal and vertical polarization. The behavior is essentially like

that of the other two cases except that for normal incidence there
is a constant phase difference of 180° between vertical and hori-

zontal polarization due to a difference in definitions of the

reflection coefficient for the two polarizations. T

Significance of the Phase and Amplitude Errors

- For most applications the amplitude errors for these cases

are negligible except for vertical polarization below 30 kHz. The
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phase errors increase with decreasing frequency and are ;greater
for vertical than for horizontal polarization.
Also, the phase and amplitude..errors decrease with in-
creasing angle of incidence (for oblique incidence) so that the
errors for angles of incidence of 70° or 80° should be less

than those shown here for 60° for the same cases.
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8. Discussion of Part I

The preceding sections demonstrate that ray tracing in complex

space can accurately calculate reflection of plane waves from a

}larﬁé-stratified isotropic medium. Since the method is not re-

stricted to the above case, it is appropriate and useful to extend
its application to more general cases. After extending the method,
it is unfortunately no longer possible to test its accuracy for the
more general cases because practical full-wave solutions are not
availab.le for comparison. Nevertheless, the method is useful
because it gives solutions to previously insoluble problems.

The method applies to the following generalized cases:

1) An ionosphere that varies arbitrarily but smoothly and slowly.

2) An anisotropic ionosphere,

In making practical calculations it is necessary to include
focusing by the ionosphere, defocusing due to reflection from a
curved earth (Keller and Keller, 1950), and the reflection coeffi-
cient of the ground. This requires a ray tracing program for
complex space able to handle arbitrary ionospheric models and
to includevreﬂection from a spherical earth for multihop paths,

No such program now exists, (The program used for the calcula-
tions in section 7 handled only plane-stratified media.) A ray
tracing progi‘am suitable for modification to trace rays in complex

space is one by Jones (1966). It would need two modifications:
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1) Change from ray tracing in real space to ray tracing in
complex space,

2) Add calculation of focusing in complex space.

The ray tracing program would calculate multihop
ray paths for various directions of transmission and
punch the results {including phase, amplitude, ground range, and
focusing) on cards. A second program would read these cards,
include ground-reflection coefficients and antenna patterns, and
combine all the contributions from the different rays (usually for
different numbers of hops) arriving at the receiver,
As in ordinary ray tracing, the above solution is not valid in
two cases;
1) Near a caustic, where a continuum of rays all converge on a
point, line, or surface, calculation of focusing by 'conservation
of energy in a narrow. tube of rays' gives an in:finit;e field
strength. Although geometrical optics fails to give accurate
results near a caustic, the correct field can be calculated in
terms of Airy functions (Ludwig, 1966).
2} When a ray grazes the surface of the earth, it excites a
diffracted ray which travels along the surface of the earth into
the geometrical optical shadow of the earth. Such diffracted
rays are important in calculating the total field at LF and there-
fore must be considered. In fact, they are often more im-

portant than the geometrical optical rays. Part II applies the geome-
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trical theory of diffraction to solve the problem of diffraction by the

earth.



PART II: DIFFRACTION BY THE EARTH

41
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9. Introduction to Part II

The method of part I, ray tracing in complex space, would be
adequate for calculating LF terrestrial radio propagatioﬁ if diffrac-
tion could be ignored. But diffraction must be considered because at
LF considerable energy is diffracted around the surface of the earth
into the geometrical optical shadow. Itis important whenever a dis-
continuity exists in the medium. In terrestrial radio propagation,
the earth's surface diffracts radio waves.

Keller (1962) in his geometrical theory of diffraction (GTD)
postulates that diffraction effects can be taken into account in a way

analogous to the way geometrical optics deals with propagation of

electromagnetic waves in media not involving diffraction, that is, by

assuming that the main signal observed is due to energy traveling
from the transmitter to the receiver along a number of ray paths
which satisfy Fermat's principle., In the case of surface diffraction,
the diffracted rays travel along the surface of discontinuity, which
in terrestrial radio propagation is along the surface of the earth.

The GTD is not self-contained; that is, it depends on the full-
wave solution to a canonical problem to calculate the energy

coupled into the diffracted rays. It first calculates the GTD

‘solution for diffraction by a sphere using an unknown diffraction

coefficient and then, to evaluate it, compares this solution with the
asymptotic high frequency approximation to the rigorous solution to

scattering by a sphere. The various necessary coefficients can be
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evaluated by comparison with special cases of the rigorous solution.

One important case not covered in the above comparison is that

of a surface caustic in the field incident onthe sphere. Because of
focusing, waves reflected from the ionosphere form a surface
caustic in the wave incident on the earth. Its effect can be found
by examining the asymptotic high frequency approximation to the
rigorous solution of radio propagation between a homogeneous

spherical earth and a homogeneous spherically concentric ionosphere

(fig. 12). This reveals that the surface caustic behaves like a

smeared-out point source in exciting diffracted rays. Separating

those terms which depend on the particular ionospheric model

(fig. 12) from those which do not, allows application of the method

to more general cases, including nonconcentric ionospheres,
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List of Symbols For Part II '

A defined in (E-36)

Ai(t) an Airy function

Bi(t) an Airy function

C see table 3

D same as DV’ a diffraction coefficient (groundwave

excitation factor)

D a diffraction coefficient (groundwave excitation
factor (see table 3)

E vertical component of the electric field of a
radio wave

ED direct field
Eo ground-reflected field
E mth hop sky wave field (after m reflections from the
m ionosphere)
G\)(b) height gain function (see table 3)
Gv(r) height gain function (see table 3 and (I-2) and (I-6))
GTD geometrical theory of diffraction
Hv(l) (x) a Hankel function of kind 1 and order Vv with
argument x
g (2)
v (x) a Hankel function of kind 2 and order Vv with
argument x
L a transmitting antenna normalization factor (see (E-1))
LF low frequency
O see figure 13
P see figure 13
P see figure 19

Pn(cos 8) a Legendre polynomial of degree n



P\)--Jé-(cos 9)

O

O

o

ko

ka

a Legendre function of degree v-% |
see figure 13

see figure 19

ground reflection coefficient (see (E-5))

an effective groundwave excitation factor of a point
source (see table 3)

shedding coefficient (see table 3)
ionospheric reflection coefficient (see (E-6))

ionospheric reflection coefficient including the phase
integral from the ground up to the ionosphere

surface impedance of the ground
radius of the earth

distance from the transmitter to the center of the
earth

see (K-17)
see (E-7)
see (E-35)

distance from the earth to the concentric ionosphere
of figure 12

height

/-1

. 21
propagation constant of free space, equal to —

A

propagation constant of the earth
propagation constant of the ionosphere

in (F-1), an arbitrary distance from a dipole
transmitting antenna

in (G-1), a distance defined in (G-10) and figure 16

in (H-1), a small distance from the transmitter

in (J-6), a distance defined in figure 17

in (K-6), a small distance from the point of shedding
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' in (K-6), a small distance from a caustic in the
incident field

Lo a distance defined in figure 19

41, 45 distances defined in figure 18

&i a distance defined in figure 19

1 a distance defined in figure 19

m+l

&R distance from the receiver to the sphere %

along a tangent
\Y

&T distance from the transmitter to the sphere x
along a tangent

m number of hops (reflections from the ionosphere)

n in appendix E, an integer
in section 12, complex phase refractive index

P same as pag

b T
P 2P, P g,

s sas Y.
a a -
P2 pbg’ P see general definition of p, in (E-3)

q normalized surface impedance of the ground (see (E-18))
r distance from the receiver to the center of the earth
s as used infnds, path length

as a subscript, it labels ground wave modes

. iwt
t asused ine , time
otherwise, argument of an Airy function
(in (E-29) ~ (E-32), in (E-58) = (E-68),

and outside of appendix E, the same as.ts)

ts " a root of (E-19)

wi (t), wa(t) Airy functions defined in (D-4)

Vi Yoo Vo see (E-54)

g
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o4 great circle angle traveled by the ground wave along
the ground ((K-18) for example)

o3 see figure 19

Qy, &g, Gf-?::d'rns

a'm-l special cases of OLi

o nearly the same as & (see (E-39))

B see (F-4)

B1, Bz see (F-7) and figures 14 and 15

Ba see (F-11) and figure 15

To impedance of free space

8 in (E-1), the angle between the polar axis of the dipole

transmitting antenna and a straight line from
the transmitter and the observerg"’at/hawise, the
central angle between the transmitter and
receiver (see figure 12)

8o in appendix G, the angle defined in (G-11)
in appendix H, the angle defined in (HB-5) and figure 16
in appendix K, the angle defined in figure 19

8., 02 the angles defined in figure 18
e . . .

mt1 the angle defined in figure 19
A wavelength in free space
v __order of a Hankel function

(in (E-29) -~ (E-32), in (E-58)— (E-68), and outside of
appendix E, same as \)s)

\)S see (E-27)
™ 3.141592654 . . .
) the angle of the ray with the local vertical

W the angular wave frequency
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10. Keller's Geometrical Theory of Diffra ction
Applied to Scattering by a Sphere

The geometrical theory of diffraction (GTD) is an extension of
geometrical optics in that the GTD also includes diffracted rays,
which are associated with discontinuitigs in the medium. In many
ways they are analogous to the reflected and refracted rays of
geometrical optics. Just as there are reflection and transmission
coefficients in geometrical optics, there are diffraction coefficients

in the geometrical theory of diffraction.

Diffracted rays have many of tile pro;)-e;ties of the ordinary rays
of geometrical optics: Like reflected and refracted rays, diffrac-
ted rays obey Fermat's principle. Applied to the sphere, this principle
gives the paths shown in figure 13 for various locations of the source
and observation point (transmitter and receiver). In figure 13a the
ray following the curvature of the sphere is the diffracted ray, and
the ray shed tangentially from the sphere is also an ordinary
geometrical optics ray. Several properties of the diffracted ray can
be inferred from this application of Fermat's principle:

a) Surface diffracted rays are produced when geometrical optics
rays graze the surface.

b) Surface diffracted rays are produced when a source is on or near
the surface.

c) Surface diffracted rays follow a great circle on a sphere,

d) Surface diffracted rays shed geometrical optical rays tangen-
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Receiver
0
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Transmitter Receiver
S 0
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(c)

Figure 13, Diffracted rays of the geometrical theory of
diffraction.
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tially from the sphere;

Once generated, diffracted rays behave like the ordinary rays
of geometrical optics with respect to reflection, refraction, focu-
sing, and attenuation. For instance, the surface-diffracted ray
will undergo azimuthal focusing on the sphere,

The GTD cannot evaluate diffraction coefficients, This must
be done by comparing the GTD solution with an asymptotic high
frequency approximation to the rigorous solution for scattering
by a sphere. When the comparisqn is made, the rigorous solution
can be interpreted in terms of surface rays traveling around the
sphere and shedding ;ra.ys tangentially. In fact, an infinite number
of these rays exists, each with its own characteristic wavelength
and attenuation coefficient., These are the familiar groundwave
modes of terrestrial radio propagation. For LF radio propagation,
the propagation constants of these modes, though differing slightly,
are nearly equal to the propagation constant of free space for that
frequency.

Application of the GTD assumes that diffraction is a local

phenomenon. If the diffracting body is not spherical, the theory

still applies 1f the body geiw.aves locally liiktewa sphere

with a radius equal to the local radius of curvature of the body at
the point of incidence of the ray. We also assume that the theory
applies to diffraction of waves with phase fronts of a more general

shape than those of the known rigorous solution.
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11, Interpretation of LF Terrestrial Radio
Propagation in Terms of the
Geometrical Theory of Diffraction

In applying the GTD to LF terrestrial radio propagation, I use the

basic method of Levy and Keller (1959), but depart slightly in detail.

Specifically, I use a slightly different path for the diffracted ray and
define diffraction coefficients differently in constructing the GTD
solution, Appendices G, H, I, and J compare the GTD solution with

the rigorous solution to evaluate the diffraction coefficients,
11,1 Characteristics of the Groundwave

Before applying the GTD, it is necessary to know the character-
istics of the groundwave, These are found from the rigorous solution
for scattering of radio waves by a sphere in appendix E. The ground-

wave varies along the ground as

e V0 (11.1)

where 0 is the great circle angle from the point of excitation of the

groundwave, and Vv is the characteristic (angular) propagation con-

stant of the groundwave mode V. The height variation of the vertical
component of the electric field is

HV(E) (kr)

—, (11.2)

re

where Hv(kr) is a Hankel function, and r is the distance from the

center of the earth.
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11.2 Interpretation of the Asymptotic High Frequency
Approximation to Scattering by a Sphere

The GTD solution constructed with a path slightly different

from that usedwby Levy ari& Keller (1959) for the aiffracted

rays agrees more closely with the asymptotic approxi-

imation to the rigorous solution. By examining this approximation
to the rigorous solution, appendix F proposes two paths for the dif-
fracted ray. The first, which seems more appropriate for I-l\:- I >a,

is shown in figure 14. This ray is composed of three parts: a

..V
straight line from the transmitter tangent to a sphere of radius =
v
an arc along the sphere T and a ray shed tangentially from the

v
sphere X and traveling in a straight line to the receiver. The sec-

. . . V
ond, shown in figure 15, seems to be more appropriate for IE | <a
and is also composed of three parts: a straight line from the trans-
. . =1 v
mitter to the earth incident at an angle sin g anarc along the

ground, and a straight line to the receiver leaving the earth at the

same angle sin—1 é. Both satisfy Fermat's principle according

to Keller's (1962) specification for diffracted rays.

Since |§ | >a for all groundwave modes, the path of figure 14
is more useful for interpreting LF terrestrial radio propagation

and is therefore used in constructing the GTD solution. In this

interpretation, the groundwave is represented by a ray which

v

travels horizontally at a height m

a. Since v is complex, the

A% . V
radius X is complex, so there is no real height X ~2 where the ray
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Receiver

/ Center of Earth

Surface of Earth

Transmitter

Figure 15. A diffracted ray representation of the ground wave
for |v/k| <a.
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a;ppears to travel. Since >part I shows that rays in complex space

are useful, I will continue to talk of rays grazing and shedding from

the sphere A
P k*

11, 3 Definition of Diffraction Coefficients

Although the definition of diffraction coefficients is somewhat
arbitrary, a given application makes one definition more useful than
another. In applying the GTD to LF radio propaga‘tion, I could
have used the diffraction coefficients defined by Levy and Keller
(1959), butI found that definitions based on the following guidelines
simplify the results:

1) Define all coefficients as dimensionless, (Since the

coefficients of Levy and Keller have the dimensions

of length%, they are not strictly analogous to re-

flection and transmission coefficients. )

2) Relate the incident field to the ground wave field with
a diffraction coefficient (excitation factor).

3) Treat a source near the ground as a special case,

4) Relate the ground wave to the field radiated from the

ground wave with a shedding coefficient.



11.4 Excitation of the Groundwave

~]

A groundwave is excited when a ray from a distant source
grazes the sphere of radius i% It is useful to define the diffraction
coefficient as an excitation factor equal to the ratio of the ground
wave field at the height % - a to the incident field at the same point.
Appendix G compares the GTD solution with the rigorous solution

of appendix E for the case of figure 16 to evaluate this diffraction

coefficient as

=2i M wy(0)
\)"t _qE Wi(t)d H (11' 3)

where the various terms are explained in table 3.

\Y)
A point source (short vertical dipole) at a height i —a can also

excite a groundwave. For this case it is useful to define a factor
R& as the ratio of the effective excitation field (as though from a
distant source) to the radiation field of the point source a small

distance 4 from the source. Appendix H compafes the GTD with

the rigorous solution of appendix E for the case of figure 17 to

evaluate this coefficient as

R, = ot /4 w1(0)<%)’é'<-§>§. (11.4)

11. 5 The Height Gain Function

AV
A point source near the ground, ata height other than —1—(-~a,

still excites a 7gﬁr01”1i1'd\71vave, but its effectiveness depends on its
height. Although a height gain function G\)(b) is usually defined

relative to the ground, it is more useful here to define it as the
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Transmitter

Figure 16, Diffracted rays for the case used to evaluate the
diffraction coefficient.
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Receiver

Center of Earth

#

Transmitter
Surface of Earth

Figure 17. Diffracted rays for the case used to evaluate the
point-source excitation factor.
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ratio of the effect of a point source at a height b - a in exc1t1ng a

groundwave mode to that at a height yl; -a, Appendix I, using the

dependence on the transmitter height of the field scattered by a

sphere, evaluates the height gain function

o (o) [E e >f< P us

where

2oy, B = /0B - - veosT it (1. 6)
or, for b%i,

RS -G LaLl

11. 6 Radiation from the Groundwave

Equation (11.2) gives the height variation of the vertical com-

ponent of the electrlc field in the groundwave. Appendix I uses

(11.2) to calculate the ratio of the vertical component of the electric

. Vv
field of the groundwave at a height r - a to that at a height ® 2

The result is the same height gain function as (11. 5)

D I e e €t~ PR
k

where

%(- Y)% = Jkr)® - V2 - v cos_l—\-)- . (11.9)

kr
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Although the height gain function (11. 8) could be used for all heights,
appendix F shows that the field at large heights can be interpreted
as being radiated tangentially from the sphere -E It is then con-

venient to define a shedding coefficient Sl equal to the ratio of the
radiation field at a small distance £ from the point of shedding tothe
field of the ground wave at the same point. Appendix J compares
the GTD solution with the rigorous solution given by appendix E for
the case of figure 18 to evaluate this shedding coefficient:

oiT/4

1
5= Sy (@ G- (11.10)

Notice that SI is the reciprocal of Rz.

Table 3 summarizes the definitions and values of these

coefficients.
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Receiver

Center of
Earth

Surface of Earth

o
e

Figure 18. Diffracted rays for the case used to evaluate the
shedding coefficient.

Transmitter
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12, Multihop Propagation for Reflection From a
Concentric Ionosphere

For the ionospheric model of figure 12 a short, vertical-dipole

transmitting antenna at a distance b from the center of the earth is

. . . . iwt s A
excited with a sinusoidal source e” , Its radiation pattern is given
by (E-1). A short, vertical-dipole receiving antenna at a great circle
angle 6 from the transmitting antenna is a distance r from the center
of the earth.

If the earth cuts off the direct line-of-sight ray from the trans-

mitter to the receiver, the vertical electric field at the receiver is

0

=Z Em ' (12.1)

m=0

where Em is the field of the wave which has reflected from the iono-
sphere m times, From (E-32) and (E-58), using the interpretations

of appendix K,

- itT /4
Em _ —L3Tr 321'r e <ka >-5- 5\
k b® rs-m' sinf
)
H2) (kb) Hy®) (kr) -iv(8 - 2m cos ) aam
k D CoT .(12. 2
wl(t)z (t - qz) e g ( v o ) ( )

Equation (12.2) is valid for all m such that the receiver is in the

o -1 Vm w( ﬁ) mco»s_ll wa (v )
€os i Wity ke 1Y

-1 v
=06 -2 — + i —T-r—_ + e
o m COS kg 1 'Yb W, (Yb) i 'YI_ W (Yr)

EHC s

m+1- P

N |
= >w1 (t)wz (t)Kt -q°%)+ (m+l)ig + 15((——115)—)(12 3)



is not too near zero. The coefficients D\) and C are explained in
table 3, The parameter

T aTe dVke)l -V (12. 4)
is interpreted as the complete ionospheric reflection coefficient
including the phase integral from the height E - a up to the iono-
sphere and back. The generalization of (12.4) for an arbitrary

concentric ionosphere is

R -ikgnds
T=ie R (12. 5)

where the path of integration in (12. 5) is determined by Hamilton's
equations (or Haselgrove's equations) for ray tracing in complex
space with the following conditions:

1) The ray must begin and end at the complex height % - a,

2) The ray must leave and arrive horizontally,
These conditions are not independent. Since the ionosphere is con-
centric, Bouguer'srule (Kelso, 1964),

n r sinyp = constant , (12, 6)

must be satisfied. Thus, if the ray leaves the height{- -a

horizontally, it must be horizontal when it gets back to that height.
Notice that for a particular ionosphere only one ray path need be
calculated for each frequency and each ground wave mode. The
same ray path will apply for any number of hops and any distance

(beyond the shadow boundary).
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Two special cases of (12,2) are of interest. First, for the trans-

mitter and receiver high above the ground (see fig. 19), from (E-63),

g o ila/zre™ (ka.)-g- e ive
m K2 -:;b'g 1 /5ing W1(t) (t -q°)
-ikfT  -ikIR
< = (DvcozT)m (12.7)
NAT VIR
where, from (E-64)
-1 v -1 v -1 v
a=86 - cos wp - cos E-I_——chos E (12.8)

is the great circle angle traveled by the ground wave mode, and

from (E-65)

m+1 - p p
<ka >F< b - w1 (t) wa (t) (t-q2)+(m+l) iq

Q)

i{m+1)
+—Tt——zz)— . (12.9)

Second, for the transmitter and receiver on the ground, b=1r = a,

so that, from (E-67),

- im/4
o Lyam et -
Em - k a® m!.\/sine kka) V "’Z (D C o T) (12.10)
where

v
=06 -2m cos E s (12.11)

and, from (E-68),

& = <1<2 >F ""'-'wl(t) we(t) (t -q°) + (m - 1)1q+1(m+1)> (12.12)
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The difference between ¢ and o is due to excitation of and shedding

from the groundwave taking a nonzero amount of room. As can be
seen from (12. 12), this difference decreases with frequency. In fact,

it can often be neglected if the frequency is high enough or ¢ is large

enough.

In generalizing (12. 10) to apply to an arbitrary concentric

ionosphere, the angle & is the total ground distance traveled by

the groundwave, and T is given by (12.5). Often
v% o~ (ka)% (12.13)

is a good approximation. Notice that the factor & in (12.10) will

cause Em to attenuate slower with distance than the ground wave.

Equation (12.10) represents a rigorous solution of the problem
(with a few approximationé). It is also derived in appendix K using

the geometrical theory of diffraction. Actually, the derivation in

appendix K really justifies the applicability of the GTD and interprets
the various factors in the solution in terms of the G’I‘D. The agree-
ment with the rigorous solution backs these interpretations, In partic-
ular, it justifies treating a focus of rays reflected from the iono-

sphere as a source even when it is close to the ground,

Figure 20 shows a comparison of (12.10) using only one ground-

wave mode with the more rigorous (E-12) (Berry and Chrisman,

1965a) for b=r=a, m=2, T=1, =100 kHz, g-a=70 km, ground

conductivity 0 = .01 mhos/m, and ground permittivity = 15, The
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Legend:
— Path integral
(Berry and Chrisman, 1965)
10°5 — o @® Geometrical theory of diffraction, | |
using only one ground wave mode.
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o~ 00| mhos/m
1076 — H=70 km —
F =100 kHz
£
>
. 10T —_
W
10 -8 ]
10-9
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Figure 20.

Comparison of the geometrical theory of diffraction
solution with the more rigorous path-integral repre-

" sentation for multihop propagation with reflection

from a sharply-bounded, concentric ionosphere.
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agreement in the shadow region tends to substantiate the approxi-
mation (E-42) used in deriving (12. 10). At the shadow boundary
(indicated by the arrow in fig. 20) and in the lit region (distance less

than that indicated by the arrow), the agreement is not as good.,

The agreement would be improved by using more groundwave modes,
but would still not be exact because of the approximation (E-42).
This is not a serious limitation., Since diffraction is not an impor -

tant effect in the lit region, geometrical optics is a better

representation than groundwave modes in the lit region,
The dip in the curve of figure 20 can be interpreted as a
pseudo-Brewster angle in the ground reflection coefficient when

uéing a geometrical optics representation. When representing the

field by groundwave modes, the dip is due to a minimum in |&2 | as

a function of 8,



13. Reflection from an Ionosphere with Arbitrary
Tilts or Horizontal Gradients

Application of the GTD to a tilted ionosphere is similar to
that for a concentric ionosphere as far as excitation of and radi-
ation from m The main difference between the
two cases is in the rays which contribute to the total field. In the
concentric case, a continuum of rays satisfy Fermat's
principle and contribute equally to the total field for the mth hop.
Going to the non-concentric case removes this degeneracy, so
that only a finite number of rays will contribute to the mth hop
field.

The ray paths are calculated by using ray tracing in

complex space including focusing. For a representative 1-hop

wave, there will be 2 rays for each groundwave mode: One
which leaves the transmitter at just the right angle to graze the
sphere v/k after reflecting from the ionosphere, and one which
sheds from the sphere v/k at just the right place to arrive at the
receiver after reflecting from the ionosphere. Very likely, the
first ray will go through a caustic just before or after grazing the

sphere v/k. In that case, the factor R& must be used to account

for excitation of the groundwave mode by a point source, and

a height-gain function must be used to account for the height of
that point on the caustic above the sphere v/k, Also just as likely,
the second ray will go through a caustic just before or after ar-

riving at the receiver. In that case, one rust divide by S, to cal-

4

culate the field at the caustic and use a height gain function to

calculate the field at the receiver.
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Another possible ray is one which sheds from one ground

wave mode, reflects from the ionosphere, and arrives tangential

to the same or another groundwave mode, This ray thus gives

a means of coupling groundwave modes.



14, Discussion of Part II

Once the basic method for dealing with diffraction by the

earth is known, it is necessary to develop a technique for practical

calculations. It is sufficient to consider only a finite number
of groundwave modes and hops. In using a computer to make
the calculations, it is practical to organize the calculations
into two parts:

a) Ionospheric ray tracing.

b) Combining the ray tracing results with ground

reflection and diffraction.

The ray tracing program is used as described in section 8,
but since diffraction is now included we must trace not only multi-

hop rays leaving the transmitter in various directions, but also the

multihop rays that shed from the groundwave. Of course, we do

not trace all possible rays, but only a finite number, For|
instance, we may step the elevation angle of transmission in 1°7
steps and trace rays shedding from the ground wave at 100-km
intervals.

A second program then takes the results of the ray tracing,
interpolating when necessary, to calculate the ray paths con-
tributing to the total field at the receiver, Where diffraction is

not important, the method of section 8 is sufficient,
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SUMMARY

The purpose of the research for this thesis was to include the
effects of both arbitrary horizontal gradients in the ionosphere and
diffraction by the earth in calculating the propagation of LF radio
waves. On the whole, itis successful. First, using the complex
phase refractive index to calculate ray paths allows calculation of
the reflection of LF (and higher frequency) radio waves from an
ionosphere in which the refractive index varies arbitrarily (but
smoothly) in any direction. Second, an adaption of the geometrical
theory of diffraction to LF terrestrial radio propagation takes into
account diffraction by the earth of waves reflected from an iono-
sphere of arbitrary specification.

In the course of this study, I have discovered several interesting
things:

a) Fermat's principle should apply to the complex refractive

index, not just the real part, because attenuation and wave

interference are both important in determining ray paths.

b) A diffracted ray which travels at a complex height v/k - a

is a more accurate representation of a ground wave mode

than one which travels along the ground.

c) A wave containing a surface caustic incident on the ground

behaves like a smeared-out point source in exciting a ground

wave mode.



d) A multihop wave attenuates slower with distance than
the groundwave because the number of rays contributing to

the multihop wave increases with distance.

75
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APPENDIX A

A PLANE-STRATIFIED EXPONENTIAL IONOSPHERE USING
COMPLEX RAY THEORY

The refractive index for this ionospheric model is given by
(23).

° - ieﬁ (h-ho) .

n =1

Since this ionospheric model varies continuously, it is more con-
venient to use Haselgrove's equations rather than Snell's law to
calculate the reflection of radio waves from the ionosphere. Since
we are neglecting the earth's magnetic field, the ionosphere is iso-

tropic, and Haselgrove's equations (13) and (14) for & = 0 simplify:

dh = V, (a)

a

% = Vv, ()

j:’h—ng—; (c) (A-2)
=0 (@

L= (o)

Equations (A?2) include only the two dimensions in the plane of
incidence because the ray will remain in that plane if the medium
is isotropic and horizontally stratified, Also, since (A1) shows

that n is only a function of h,

9n _ dn (A-3)

(A-1)



and
an _ S
ay - % (A-4)
which implies
dv
y'_ drre o
Eramial (A-5)
and Vy = constant. (A-6)
Using the initial conditions
V' + Vg =ng, (a-7
and (A-2a), - we can integrate (A-2c) to give
th = - VYB . (A-8)

Because Vh varies monotonically over the path (positive for the up-
going (incident) ray and negative for the downgoing (reflected) ray)
and because (A-8) expresses n as a simple function of Vh, Vh is a con-

venient independent variable, Thus, (A-2) becomes (letting Vh—' V)

av -~ dn (2)
ST o
(A-9)
v
dy ¥ (b)
dv , dn
dh
dP _ 2 -
-y (A-10)
N 3h
From (A1) -
202 = ipeP ) g 1a?y (A-11)
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and using (A-8), we have

znghn—= “B(1 -V 2 -v3 , (A-12)
or T
dn _ B & _ e } -
ng = -3 (C7-V°), (A-13)
where
c*=1-v? . (A-14)
y

Using (A13), (A14), and (A8) in (A9) and (A10) gives

Ezv—vz— (2)

o 2 Y —
= -3 EE_L\/J_ (b) (A-15)

dp_ 2 1-C° +v®

v~ "B cF-ve (c)

We can calculate h without integrating(A-15a). Combining (A1) and

(A-8) gives

=1-V?-v3=C?-v?, (A-16)

To calculate a reflection coefficient, we can integrate (A15) begin-

ning at h=0 and continuing until h=0 again after the ray has reflected '

from the ionosphere. The corresponding values of V are found by |

letting h=0 in (A-16). They are

V= £V, (A-17)

where

vV, = \/ C? _je Pho (A-18) —
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" Thus (A15) can be written

-V,
- .2 VY dav .
y =2 % : (A-19)
Vo ’
and -V, -V,
2 dv 2
= o — —_— L (A-20)
P 3 j ST z / dv
V% Vo
From standard tables,
g = iyl 1 C+ Vg,
B‘C C -V, (A-21)
fand N
v 4 V, : —_—
P = v - 3 2, (A-22)
y
or
- 2 €+ 4 V,
‘ P = BC log C - Vo -3 (A-23) »

The results in (A21) and (A23) correspond to measurable quantities =

only when y is real. Since Vg is complex (from A-18), Vv, and C

must also be complex for y to be real. From (A-21) and (A-18),

2V V—a :
C+ .

y = TCL log Bho . (A-24)
C - - ie

Given the real part of Vy’ which determines the angle of incidence on
the ionosphere, we need to find the imaginary part of Vy necessary
to make y in (A-24)real, We use this value of VY to calculate

C to substitute in (A-23) to find P, which will give the amplitude

and phase of the reflected wave. For finite ho, (A-23) and

(A-24) are the solutions (not including focusing and inverse
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distance losses) for a point source at a height hy below the reflec-
tion height, We can use (A-23) and (A-24) to find numerical
solutions to the point source problem by varying the imaginary
part of V. until y is real,

However,y we can also use{A-23) and (A-24) to calculate analytic
solutions for a plane wave source by letting ho -+ ®, This gives

from (A-24)

lim 2Vy 4C° -
or
lim 2 V% . o
Y= e EC [log (4C% - i— +# Bho] (A-26)
Let
V, = os+it (A-27)

Equation (A-26) shows that as hy = @ the imaginary parts of
Vy and C need only be very small for y to be real. Therefore
we can assume '
t <<s . (A-28)
From (Al4), (A27), and (A28),

let

c® ~ (1-5° (1- =)

(A-29)

ot -
c~/J1-8 (1- -1-1—:5-?), (A-30)



81

and
Lt | [
Ve~ s{l+i-—) La s - __11;_3 O (A-31)
C 1-g° (1 i st ) l-s s(1-s%)
lusa .

Using (427), (A29), and (A31) in (A26) gives

\ lim 2 s : ’
Y =i . N I .
ho Byl -s® ( ‘s(Tes?)

l-5g

(log 41-82) - _Eﬁg_ 4 Bho-i—g), (A-32)

or

 tim 25| Hoga(i-sfppndid ot
Y = hom> gATE { : ) TZ ¥ 519

(B__h_gf _1_9_g_f1_(}__'_-f‘°i)_-2ﬁsé . (A-39)
Setting
Y
(Bho+ log 4(1-4%) -Zsa)}z 0 | (A-34)
gives
Mo gy 4 log 4(1-67) - 269) ¢ - = s(1-5%) (A-35)

ho—-'oo



and

lim 24

y = real(y) = h {Log 4(1-5%) +Bhot. (A-36)

Substituting (A29) into (A18) gives for large hy and small t

Vo n /1-6° (1 - —1%—) (A-37)

Putting (A36), (A27), and (A37) into (ArZZ) gives

2 ' 2 ' 4 = ) i st )
P~ B - -Sg (S+it) (lOg 4(1-S)+Bhg) - B /1_5 (1 1-52)’
(A-38)

which can also be written

t
~ 2(l-i-3%) .2 4 r——v-_ . 4 ’——-_ = i st
W(log 4(1 S )+ Bhg-e 1 S2 +-B— las —]__.-__SE-

,,,,, _— (A-39)
or )
2 \
Pr —=——[log 4(l=5°)+ Bhy-2 1-3)
B/1 -5 ( =) o= 2(1-57)
I —
-%-i—-t_—(”-l 4(1- 2)'Bho+252) -4 (
T }og (1-s . (A-40)

Using (A35) in (A40) gives

P~ 2— -log 4(1-5°) + Bhg - 2(1-92)) JMivl-s ‘1'9’2-_ (A-41)
B/1 -3 3

82
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APPENDIX B

 USING THE APPROXIMATION OF SECTION 4 TO CALCULATE

THE REFLECTION COEFFICIENT,

Equation (A4l), which gives the complex phase path of a ray
which has its end points in real space and thus corresponds to a

measurable amplitude and phase, was derived from (A22) by vary-

ing the imaginary part of Vy until the ray ended in real space. An

easier way to derive (A4l) from (A22) is to use the approximation

developed in section 4 to allow for the Ta:y‘s missing the receiver,
For this, the desired receiver location is the same as the point

where the ray actually landed, except that the imaginary part of y
is zero. This will cause the ray to end in real space, since the
height of the end point is already real. From (18) the correction

to be added to the phase path in (24) is

Vy X (0 - i TImag (y)). (B-1)

For large h,, y is given by (A26). If Vy and C are real, then
from (A26)

1

-V .
Imag (y) = Y (B-2)
BC
From (A22) and (A26),
2 .m 4C D
P =55 [lOg (4C%) -4 - + Bho] -5 - (B-3)

Adding the correction (B-1) to (B-3), we get from (B-2)

2 . 1T . T
P = _ga— [log (4C2) - 17 + Bho] - B + BC °(B-4’)



Or from (A-14)

P =

which agrees with the result in (A%1) obtained by varying the T

imaginary part of V

2
FC

y-a

84

(log (4C%) + Bhg - 2C*" -r'i_g. c?),

(B=5) — —
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APPENDIX C .

AN EXPONENTIAL PROFILE USING STANDARD RAY THEORY.

As iﬁ a.f;pendix A, the complex phase refractive index in the

ionosphere will be approxirnated by

0T (C-1)
for LF and VLF. thing
n=u-ix, ' (C:Z)%
it is easy to éhow that
2 1+‘J1+e26(h-h°) -
o 2 ; (C-3)
and
S
Notice that
le -1 as (h-hy) - - ((5:57)7_
and
v2 > 0as (h ~hg) »- = | 5

as expected.

However, notice also that
uz =z 1 for all real h

and that \° increases as h increases, Therefore, if the ray path is

determined by applying Snell!'s law or Haselgrove's equations to the

‘real part of the phase refractive index (C-3), the ray will never

‘reflect, but will continue climbing forever, Thus, standard ray’



can never be used to calculate accurately the reflection

coefficient for a medium described by (C-1).

86
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_APPENDIXD

HANKEL AND DEBYE APPROXIMA TIONS
FOR HANKEL FUNCTIONS:*

The Hankel approximation is valid for large v (Berry, 1964b;
Wait, 1961):

T (1)(x) -i(-t)% -i(-t)_i_
[y, M 2w - wg(t)
(x*-v?)* (vtanB)
(D-1)
(2) $ 3
*;—TH (x) o £1(=t) T wt) = i(-t) Wy (t)
(x*-0%)* (vtanp)
where
%(-t)s/e N A cos_1 % = y(tanB-8) , (D-2)
B = cos-l f , (D-3)
and (Wait, 1961)
W,y (t) = /7 (Bi(t) - i Ai(t) )
. (D-4)
wa(t) = /M (Bi(t) + i Ai(t) )
From (D-2) and (D-3),
¥
Bt) - cos  x B
— = = (D-5)
(a” x  (-)f AT
and
‘ _ sinf (D-6)

*also see the discussion in the appendix of Wait (1967a),
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. From the above, for large x,~__

(1),
Hy (=) o L [tanB ) 3 _ sinf Xv_a'(t) ~ sinf Wy 'Stl
(1)(X) 6x \tanf-8 sin?fB St wal(t) Jot Walt)
Hy ‘
and (D-7)
(),
Hy X Ll ftan 3 \ _ sinf wt)  _sinf w(t)
(2)(x) 6x \tanB-B sin®g -t wy(t) JE wylt)
Hy
3 D)
3y Hy (X) o "_l_ B ) 3 N B E-al(t) N B _\_N_al(t)
Hv(l)(x) 6y \tanB-B tan?B] -t wazl(t) ot wa (t)
(D-8)
2 .. (2) ,
w ' M 1/ 8 3\, B w't), B w(t)
HU(Z) (x) T év (tanﬁ-ﬁ B tan“ﬁ) =t wy (t) JTf wy (t) .

A simpler Hankel approximation is valid for x &~ v (Berry, 1964b;

Wait, 1961):

If x~ v, then from (D-3) B~ 0. (D-9)
Thus, the following expansion is valid:
3
tan =~ B + % ) (D-10).
or o
3
tang - B =~ % . (D-11)



From (D-11) and (D-2),

From (D-3) and (D-9),

B2 =3 (- Lk - v

From (D-12) and (D-13),

and

or

Using (D-16) in (D-1) gives

/3
7 HY P () -i(,%)1 Wy (t)

1/3
7 1B () = 1(5) w (t) .

From (D-12), (D~13), (D-~5), and (D-6),

(#).-(2)"

(D-12)

(D-13)

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)

89
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at 2\ ¢
(ax) v * -(;) . (D-19)

Hu(l) (x) wa (t)
(D-20)
HV(Z) (%) o 2 3 w, '(t)
HV(Z) () v Wy (t)
From (D-18) and (D-8),
S (1)
S0 Hy (%) . 2 % Walt
D o v] W)
(D-21)

5 (@)
V™ (a)* Wi (t) |

HU(Z) () Wy (t)

The Debye approximation for the airy function is valid when

[t] = = (Wait, 1961):

-in/4 -3 (-t}

W (t) =~ for 0 <argt <%1‘r

I

(-t)

~ (D-22)

Lim4_ 12/a (-t)*/? )
w(t) ~ e for 3 M <argt <2m,

(-t) =




For a discussion of the Stokes phenomenon, see Budden (1961).

From (D-22),

wy(t) N 1W<t
W,y (t)
(D-23)
w'a'gt! ~ .
wa (t) -t

The Debye approximation for Hankel functions is valid for x
not near vy (Handbook of Mathematical Functions, 1964; Berry,

"1964b), From (D-22), (D-1), and (D-2),

| 4
FHy(l)(x)N e-i1r/4e+i«/xgv?e—i v cos"1 x . e-i ﬂ/4eiy(tanﬁ_ﬁ)
2 L . (Xg_va)‘t ‘ (Uta_nﬁ)%
(D-24)
: R4
J—?Hv(z)(x) N R 1r/4e-i" ¥ +iv cos 1% _ i M4_-iv(tanB-B)
2 . (xz'vz ) * (V tanﬁ) é
From (D-7) and (D-23),
(n’
Hv(l) o~ sin B8
Hy' (%)
(D-25)
Hv(z) .

~ - 1sinf .
1) (x)



From (D-8) and (D-23),

2 1M ()
oV N B
Hv(l)(x)
(D-26)
-é—'HV(Z)(x)
X~ ip.
1u'? (x)
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APPENDIX E

THE RIGOROUS SOLUTION TO THE BOUNDARY VALUE

PROBLEM OF A TRANSMITTER BETWEEN THE EARTH

AND IONOSPHERE WHEN THEY CAN BE REPRESENTED

AS TWO HOMOGENEOUS, ISOTROPIC MEDIA BOUNDED
BY CONCENTRIC SPHERICAL SURFACES

Assume that we can represent the earth and the ionosphere as

two (smooth) homogeneous, isotropic, concentric spherical sur-

faces of radii a and g respectively, (See fig, 12), A vertical,
short, dipole, transmitting antenna at a distance b from the center
of the earth is excited with a sinusoidal source (eiwt). The strehgth
of the source is such that the transverse electric field (time depen-
dence suppressed) of the radiation field at distance 4 from the

dipole at an angle 6 with the dipole axis is

E = ikL sinf e X%

4

(E-1)



The solution for the vertical component of the electric field
a distance r from the center of the earth and a great circle angle
@ from the transmitter was first given by Watson (1919), Since

then, Berry (1964a, c), Johler (1966), and Johler and Berry

(1962, 1964) have expressed the result in various forms.

Berry (1964c) expresses the solution for the case

of a transmitter and receiver on the ground in a very concise

and easy to interpret form, Using some algebra and the results
of the other papers above, it is possible to derive Berry's (1964c)
form of the solution for the more general case, For r<b cos 0

this solution expressed as a sum of zonal harmonics is

94

L - kw .(2) (1)
Er = g Zn(n&)(nn) Pn(c;ose)—élr Hp 3 (kKb) Hy  a(kr)
(E~2)
(L+p,"R)(1+p BT) :
1-pRT

Interchanging b and r in (E-2) glves the solution for b<r cosf.

P,(cosf) is a Legendre polynomial, n_|_,L‘(x) and H é(x are Hankel

functions.

v 2 Higy Oy) Hy)y(o (E-3)
P x ) tn
%(kx) H %(kY)

p=p,® (E-4)



(ke) | ‘”% (ka2)

K lﬁ,g(k ) % (k2)

R= - (E-5)
(2)

(1)

=

s (ka) | HL) (kqa)

||--

k Hn+‘%(ka) ke fll,,)t(kaa)

which is interpreted as a ground reflection coefficient since it
reduces to the Fresnel reflection coefficient when the Debye
approximations are used.

g’ (2)’

Hot % (kg) 1 Hn_}_% (ksg)

1
i HD (ko
T= - (E-6)
o {2
1 +3 (kg) 1 Hpy g (Kag)
kgD g Fe 5@ g

n+ ® n+ &

which is interpreted as an ionospheric reflection coefficient.

Equation (E-2) can be converted to a contour integral by the

well-known Watson transformation (Johler and Berry, 1962):

TR) (1+ p, 8 T)
1 - pRT

dv , (E=7)

E, = ~ff(u) 1?1y B (k) L Pa
C

where

~iLq - v(y- v+
4kra/2b3/2 cosYT

f) = Pv‘i‘ (~cosb) (E-8)



and v is substituted for n+# in using (E-3), (E-4), (E-5) and (E-6)
in (E-7). The contour of integration is counter-clockwise in the

lower half of the complex v plane (Berry, 1964c).

There are three standard methods for evaluating (E=7)

(Wait, 1962b):

1) Numerical integration in the complex v plane,

2) Summation of the residues of the poles where pRT = 1. (Johler
and Berry, 1964). This corresponds to summing wave guide

modes.

3) Expansion of in a power series of pRT and interchanging

1
1-pRT
summation and integration, This corresponds to summing

wave hops. To be valid, pRT <1 on the contour. (Wait, 1961;
Berry, 1964c). '
Below is a development of the third method following the work

of Wait (1961) and Berry (1964c):

.4
E.=Ep+Eg+ 2 Em (E-9)
m=1

[£w 1,8 (kr) M (1b) dp for b<r cosd
C

Ep= J‘f(v) HV(Z)(kb) Hv(l) (kr) dv for r <b cosf (E-10)
c

ff(v) HV(Z) (kb) HV(Z) (kr) dv otherwise,
c

which is interpreted as the direct line-of-sight ray from the trans-

mitter to the receiver.

(1)
Eo= [0 10? (kr) 1,0? (1) %’—@1(% R dy (E-11)
C

V
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is interpreted as the ray connecting the transmitter and receiver
which has made one reflection from the ground. Equation (E-11) is
valid for both r <b and r >b as can be seen from the symmetry

between r and b,

H V(Z) ka

b
) (ka)(1+ P, R)(1+ parR)

E, = J‘f(u) 11,1 (kb Y (1cx)
¢ (E-12)

R™Lpm™ dp

is interpreted as the four rays which reflect m times from the

ionosphere, These four rays came from the product (1+pabR)

Tr
(1+P *R).

For LF terrestrial radio propagation, and at higher frequencies,
the dominant contributions to the integrals (E-10), (E-11), and (E-12)
are for Vv > > 1., This allows us to replace the Legendre and Hankel
functions with the first terms in their asympototic expansions (Berry,
1964b), (For the Hankel functions this is known as the Debye approxi-
mation, ) These approximations are valid except where sinf is near
0, or the arguments of the Hankel functions are near v. When these

approximations are valid, it is possible to evaluate these integrals

by the saddle-point method, which gives results that can easily be inter -

preted as geometrical-optical rays. For cases where values ofy
near ka give important contributions to the integral, the saddle-

point mefhod cannot be used.

For the direct wave, making the Debye approximation and
evaluating the integral by the saddle-point method corresponds to
neglecting everything but the radiation field.

For the ground reflected wave, vV~ ka indicates that diffraction

effects are important. (This corresponds to rays that graze the

earth and are then diffracted into the shadow.) When the receiver
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is in the shadow, it is practical to evaluate (E~11) by summing the
residues of the poles where the denominator of R in (E-5) is zero,
This corresponds to summing groundwave modes, that is, summing
contributions of waves which creep around the earth, Keller (1962)
refers to these as creeping waves. Since diffraction is important,
V= ka gives the important contributions to the integral , and the

simpler Hankel approximation may be used (see app. D):

E!‘(l)lgkaz ~ _(g_)% wa ' (t)

H\)(l) (ka) ka wa (t)
(E-13)
H}Z(Z) 'gka! 3 -(i>% wy ' (t)
H\)(Z) (ka) ka wy () °
where
L
2\ 3
t= <k_a> (v -ka) . (E-14)

Since the ground is a good conductor at LF, kja is not near v, so

the Debye approximations may be used:

(-’ . v\?
1, (kga) ~ 1-(k ) . (E-15)

2a
15, (kqa)

Substituting (E-13) and (E-15) into (E-5) gives
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Ra = (E~16)

or

R~ = (E-17)

where

N 2 T N

which will be considered constant (independent of v) from now on,

since kg> >k and v~ ka,

Expanding the denominator of (E-17) in a Taylor's series about

t =ty where tg is determined by

gives
¢ -] .
g (ts-0?) (-te) 4 2HR ) g (m-20
1
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since w, satisfies the Stoke's differential equation

w ')
W1(t)

Therefore, (E-17) becomes

wa'(t)

we (1) - 4

(t5-q) (t-tg) <1+(2—(t—j_?3 - q) (t-tg)) .

From (E-14),

For v=ka, the simpler Hankel approximation is valid:

3

: %
B, %0~ = (k—i) w1lt),

(E-21)

(E-22)

(E-23)

(E~24)

where t is given by (E-14). Substituting (E-22), (E-23), and (E-24)

_into (E-11) gives
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E, =Z jf(u)H\,.(Z)(kb)H\)(Z)(kr)“’L(t-Z
s C

w(t)
(E-25)
at-ys]
(wg (6 q) 2 )
(g -6 (£-t) (1 + (ﬁ'l—q:; - q) (t-t), :

where ¢, is a contour sui‘rounding the sth pole, Ewvaluating by

residues gives

_Vli’ﬁﬁ -q 3
. K
Eq= 2mi ) 1, ' (xb) H\,A(Z)(kr)g—ﬁ% %’f{%l—,)—(—zf“-) (E-26)

where, from (E-14),

3
V, = ka + (-153) t, . (E-27)

Using the Wronskian (Wait, 1961) and (E-19) gives

7 N
W 2 gt.) -21 . (E-28)

walty 37T Wit Walt,)

Substituting (E-28) into (E-26) and dropping the subscript s, but
still remembering that t is a root of (E~19) and that v is given by
(E-27), we have

, 3 (2) (2)
B, =,4,,(53) p LGy () L (E-29)

2 W, (t) Wy(t) t-q°

or, from (E-~8),
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. 2 %
Ed=—}$g7%375 (%) T viy- %)(V-l-']g‘

(2) (2)
P\i(-cose)Hv (kb)Hv (kr) (E-30)

cosVT (t -q°) wy (t) wy (t)

For y>>1, the asymptotic approximation for the l.egendre

function is valid (Berry, 1964b).

1 (- cosB) T .
V -z |2 -i= -iv@
app—— | ~ Jrvsind e 4 e . (E-31)

Substituting into (E-30) gives

iLm/3/2 fka vo/2 -117/4 -ivé H\)( (kb)H\,(Z)(kr)
Fo~ W( ) Z o © i (- - (2732

Appendices G, H, I, and J use special cases of (E-32) to

evaluate diffraction coefficients.

When the receiver is in the shadow, it is practical to calculate

the mth hop as a sum of residues, From (E-12),

Ff(u)Hu‘z)(kb)Hu(Z)(k )—(%)-k—al (b + R) (p, +R)R™
(ka)
(E-33)

(pT ay

Substituting for R from (E-22) and dv from (E~23) gives
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2 L

% m+l
ka) 1 fm )
() )l . e

where c, is a contour surrounding the sth pole,

AD
frrlt) = Af(u)H(,‘z)(kb)HV(z)(kr)g:)’ (tz) pT T (E-35)
and
A= [pb""(t.-q%(t-t,)(1.+(z(t1_qa) - g (t—ts)) -, q]
a 1. Wo'(t)
[pr (tl'qa)(t'ts)Q"’{ZCthE - Q)(t"ts)) —Wa (t) + q] (E-306)

(q w '(t ) m-1

wa (t)

1 m+l
(+ G - o) )

Evaluating (E-34) by residues, we get

= m+l m
kal® 1 2mi\ |9 Tt (t
Em = (2) 2(?7;9 (m:> [ at ]t_t - (B3

From (E~35) and (E-14),

(1) = £nlt) [-13—;’ 6], (E-38)
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where
2 2 1

i o) S Pie Lt

=i + + , + -
) Hv(z)(kb Hv(d)(kr) H,1)(ka)

(E-39)
I ) .
- 2) — - E‘R +;§' g‘é']
Py - P AV
Taking the derivative of (E~38) gives
. ooy [ dv 4& )
£77(t) zfm (t) -idt oZl+ £, l}ldt 1t . (E -40)
Using (E~-38) in (E-40) gives
3 dv ,\° _(dvdady] _
m (t) = fm(t) [(—i toz) ~i% dv dt =
.
(E-41)
dv\® |. dé’|
fm(t) ( dt) [oﬁ i
I will now assume
d—z‘ << &7, (E-42)

Wthh is equlvalent to assuming tha.t f (t) varies approx1mate1y

exponentially with t (or v), since in that case & is nearly independent

of v. In practice, the approximation is good except near &= 0, which

corresponds to the receiver's being on the shadow boundary of the

earth (that is, on the horizon of the mth hop).

Because thls method 1s

not practical in the lit region, but only where the field is diffracted
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into the shadow, only the case & >0 is of interest and the results

are not valid near &= 0.

Therefore, from (E-41) and (E-42),

17 dv - 2
fm (t) = f(t) -idt o . (E-43)
Similarly,
m m
3 fm(t) _ dv
v fm(t) <~1—dt a) : (E -44)

Using (E~31) in (E-8) we have

_iL%@us/s -im/4 -iv@
W)~ 17265 7% formd © e : (E-45)

Neglecting all but exponentially varying terms in (E-45) gives

v _ 6 (E-46)

(E-47)

and then
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3 .. {2) 3 A1) D A1),
L 23p _3v Hy ' (kg) 7w Hy' " (kg) . 2v Hy' “(ka)
(E-48)
Sa; Héz)(ka)

1% ka)

Equation (E-44) must be evaluated at t=t, to use in (E-37); likewise

- 1
a in (E-39) (therefore also (E-46), (E-48), and n %%). It is easier to
evaluate Al" -:—bé at t=t; while calculating the derivative because so

many terms are then zero, From (E-36), using (E-21) we get

VRS , ]
134 Pba(t.-qa)-v t.-(-:—f'i—ﬁm + Pra(t,-q"’) - (c,..(‘”s (t,)) >+
vV - \
(E-49)

s W (t 1 dt
-(m-1) .- walt) (m+1)(2T.:€;)-9 i

Wa(ts)

Using (E-28) gives

>

2
24 _ [muam ((pba+ p.2) (tyecP)—(ens) Q t )

21 W g (t,)
1 dt
-(m+1) <m - q»] d_v_

Using the Hankel approximation (app. D) gives

(E-50)
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———————ee R
H\)_(l)(x) ;"Y Wa (Y)

(E-51)
3 .. A2) 14
M s .ggﬁ-lx wy ' (y)
H\)(Z)(x) N=Y Wll (Y) ’
where
2 32 - JaB R -15
3 (=N ¥ =/x%-1® ~p cos . (E-52)

Using (E-46), (E-51), (E-48), (E-50), and (E-23) in (E-39) gives

K- 1 Lo, ,
~ = kb = / - 4 R
a= 0+i cos Wy (yp) + iCOS kr Wﬂyx! + iCCos ka (Wa gt'! W Stul)

'\/‘Yb Wy (Vv) ;‘Yr wi(yr) - t walt,)  wi(t,)

v v

-] L -l s,

+ icosy k (w, (vg) Wa'st))Z + miSes ka (Wg (ty) w]'gt 2) s
;" €

wilyy) ~ Waly, NES walty)  wylt,)

3z / ;
2 w,(t,) Wa(t a ex_/a r(t,)

1
=i (m+1) (Z(t-:-;F) -q)) s (E-53)

where
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2 3/2 ' _1_'{.

T (n)  =N/(KD)T® -vcos T kb
a/3 e L

% (-y:) =+(kr)®-1® -V cos Yer (E-54)
a/2 R R

% (-y¢) =+(kg)®-v®-vcos 1kg

From (E-35) and (E-36),

fon(t) =1 () v, 2 1ct) i, Ppien) a2 @-za {f’f) (p1f" (2-55)
Hy," “(ka) 217

Using (E-45), (E-28), (E-47), and (E-24) in (E-55) gives

frmlty) = -iL/mys/? e iMA;UE o1y, P ry Pier)
mlts) = 242 kra3/2b%/2 /5inf wi (tg)®

(E-56)
m
-2iT HUE(Z)(kg)
Wl(ts)z HU'(]')(kg)
Using the Debye approximation (app. D),
(2) s
Hy k ~ i e-ZiA/(kg)g-vg o 2iv cos kg (E-57)

ty, Nixg)

(E-44), and {(E-56) in (E-37), and dropping the subscript s for con-

venience, we get
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— 1 - _V_.
E _—L‘n‘s/ngz elw/4 ka\® s 3 /3 -iv<9-2mcos 1kg
m~ 132 3/%, /sinfm!\2/ t ©

(E-58)

1 P [c2iTa (m)* -2/ (kD v?

Wy (t)2(t-g°) teg® \ 2, wilt)”

Notice that for m=0 (E-58) agrees with the ground wave E_ given

by (E-32). The Debye approximation gives

W' ) o s
Wl(Yl) . b

(E-59)

14
Wz (Vq) . —
Wz (Y5 ) P -Yg )

Using (E-59) and (E-28) in (E-53), and for y~ka (app. D) we have

v
1 X 1
cos ka 2\3
N - (ka) ’ (E-60)
l_V_ v
&= G-chospl'l-(yg+i cos kb W, (yy) + icos-lkr 3y (¥e) : +
Ny Wy (ys) Jr wy (ye)
(E-61)
1
({2 \® [[mtl-p p ? P 1
- <ka> ( Zb I w,(t) Wa(t)(t-q®)+ i(m+t1) (q +2(t-qa))

Two special cases of (E-58) are of interest. First, for the trans-
mitter and receiver high above the ground, kb>> and kr->~>v, so

that the Debye approximation is valid (app. D):
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vV
. P -1-—
— im/4 -i/(kr)®*-v® iv cos kr
«/311 HV(Z)(kI‘) 2 e( 2 (v)g) g
N
k
(E-62)
1%
im/4 -is/(kb)?-v? iv cos kb
JEE 5 ey 2 s .
2 v 2
b>-&))

Using (E-62) in (E-58) gives

E = iL Jm23/? ei m/4 (ka) 3 s . 5/2 e-iu % “iw (kb)a-uze-iJ(kr)z-u
- N - v 3
MY m! 2/ ¢ (rg-(z) !)% (bg -(%) )iwl(t)”’(t-qz)

k,
m (E-63)
2iTa (ka)? o72V(ke)S-v
t-q 2 w, (t)? ’
where
_lwy— _IL __IL
=8 ~cos " kb -cos " kr -2mcos kg , (E~64)
and, from (E-61),
12 LS L
&=0-2m cos kg - cos kb - cos kr +
(E~65)

1_ -
'(E;Z) (m+ ZPb Pr o wy(t) walt)(t- "’)+(m+”iq+;(tm-21’))’
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The second special case is for the transmitter and receiver on the

ground,

a a
b=r=a,yb=y,=t,pb=pr*=l. (E-66)

From (E-58), using the Hankel approximation (E-24), we get

. 2
E._ = Li27m e”r/4 2 3 55/ -iu(e--chos“1 kg)
m = ka®m!,/sinl ka t v e -
\ t-q
(E-67)
m
t-g° \ 2 vy (£)? :
and from (E-60), (E-61), and (E-19)
1-X
& =6-2mcos kg +
(E-68)

. _L__’l
i (_%_) (—-—1 wy(t) wa(t) (t-q®) + (m-1)iq + ;(tm-:xl)>

ka 2

Appendix K interprets (E=63) in terms of the geometrical theory

of diffraction, and section 12 discusses (E-63) and (E-67).
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APPENDIX F

INTERPRETATION OF THE PRODUCT OF A LEGENDRE
FUNCTION WITH A HANKEL FUNCTION FOR LARGE ORDER

As shown below, one interpretation of

(=) (2)
(EE)'ﬁ %( cos 0) Hﬁ (kx;) Hv (kb) 1)
cos VT wq (t)°

in (E-30) is that the diffracted ray travels at a complex height,

i\i- - a, above the earth.
When v is large (as it is for the LF band and higher frequencies
for terrestrial radio propagation), the Legendre and Hankel functions

may be approximated by the first term in their asymptotic expan-

sions (Berry, 1964b; app. D):

Pv__l_ (- cos 6) e-ve o m/4

£ Az e (F-2)
cos VI VIT
—— s5inB
2
and k/—r Ly
. 2 2 . - .
-ikyfr® - (=)*+iv cos T — +im/4
k. (2) e kr e
> H\) (kr) ~ \)\g>7; . (F-3)

The approximation for the Legendre function is valid except near
sin 0 = 0. This occurs at 6 = 0, which corresponds to the observer's
being near the transmitter, and again at 6 = 1, which corresponds
to azimuthal focusing at the antipode of the transmitter.

The approximation for the Hankel function (the Debye approxi-

. . . v .
mation) is valid except near r = —, which occurs when the ray

k

grazes the earth. An alternate expression of the Debye
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approximation is

@HV(Q) o see 5)n _-ivitan B - B) i /4 e
/T tan B
where
B = cos-li\i‘- ) (F-5)

Using (F-2) and (F-4) gives

. V v .
e-lk('l\-:' (6 -84 - Be)+Etan By, + —tan B;) el /4

A T 1;-—-—-————"""“ , (F-6)
/ . /v 2
% sin 8 /k tan B, m tan By (wl(ts))
where B, = cos_lll)—b and By = cos_l-li)-; . (F-7)

This expression has a clear geometrical interpretation, shown —

by figuréwi 4, The cb-mpléx pha;é is thatofa wave with propagé.tion constant
k which travels in a straight line from the transmitter to tangency

\%
with a sphere of radius — concentric with the earth, moves along

k

the sphere an arc length % (6 - By - Bz), leaves the circle tangen-
tially, and travels in a straight line to the receiver. The term

/ T{Y sin 0 in the denominator gives the azimuthal focusing of these
rays caused by their traveling along great circles. The terms
m and m give the elevation focusing of the rays
traveling along the straight line segment connecting the transmitter
and receiver with the earth. Notice that the path satisfies Fermat's

principle if we assume that the effective propagation constant

. . .V
traveling in an arc is ot
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This interpretation can be applied to this expression for any
value of v, so that (E-25) can be interpreted as an integral over
paths of the type shown in figure 14. However, transforming the
integral to a sum of residues (E-26) chooses those particular paths
of the type shown in figure 14 which contribute the most to the sig-
nal at the receiver. The value of v is chosen to make the
denominator of the ground reflection coefficient zero. This cor-
responds to choosing a value of v such that the boundary conditions
at the surface of the earth are satisfied with only a reflected wave
and a transmitted wave (into the earth), but no incident wave, Thus
for particular values of v, considerable energy is diffracted
around the earth into the shadow region.

H|§‘< a, this interpretation of (F-1) has the ray traveling
through the earth with the propagation constant k of free space.

Another interpretation of (F-1) is possible if —l <<a,

v v
<<
_‘k a. If X

‘then |t| is large, and the Déebye approximation for w (t) for

70<7ar_gff<% ,

3
-im/4 - g (-t

Wy (t) ~ T s (F-8)
(-t)*
is valid. Using
3 S — -
2(-t)® =@l -V - vecosT = = v (tan Ba - 83)
(F-9)

and

1 3 -1
(- 1% = [ 5 vitan Bs - 8a) |7, (F-10)
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where

-1

By = cos (F-11)

N
ka 2
gives v v
o-iT/4 -ik( tan By - - Ba)
wy (t) ~ 3 = : (F-12)
[E- v (tan By - Ba)J?

Substituting this into (F-6) gives

[:E v(tan Bz - Ba)_‘g

/E tan B, /k tan Bg sin

. v
e-1k (Etan By -

i 2(a(0 - By -85 +285))

tan By +— 'ca.nt)+ﬂTi . (F-13)

k 4

This expression also has clear geometrical interpretation, as seen
in figure 15.

The phase is that of a wave which has traveled in a straight
line with propagation constant k from the transmitter to the earth,

2—, travels with propa-

is incident on the earth at an angle © = sin~ T

v
gation constant 5 along the earth a distance a(8 - B, - Bz + 2B3),
leaves the earth at an angle © = sin” kla.-’ and travels in a straight

line with propagation constant k from the earth to the receiver,

Notice that this path obeys Fermat's principle, since Snell's law,
A%
k si = —
sin @ = —,

is satisfied as the ray arrives at and leaves the earth if we assume
the ground wave travels tangentially. Again, the other factors

represent focusing.
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Notice the difference between these two interpretations: in the

first case the wy (t)° was ignored in calculating the phase and in

the second case the Debye approximation gives the contribution of

W1 (t)° to the phase. In both cases the resul{:ing geometwrical inter-
pret:;mtion of the ray path satisfies Fermat's principle. It might be
possible to include the effects of a phase contribution from w,; with-
out making the Debye approximation in order to get a path which
would vary continuously between the two extremes presented here.
In practice, this is unnecessary because when v = ka the two paths
are identical, and since v ~ ka as determyined by the ground wave
modal equation (E-37) and (E-19) there is little difference between
the two paths. In fact, the path where the rays graze the earth
assumed by Keller is probably just as accurate, but the paths in
figures 14 and 15 allow a little more interpretation. All the cal-

culations use the first interpretation of (F-1) shown in figure 14,

Bremmer (1949, page 77) has interpreted ground wave modes
in a similar way with a ray which travels at a particular height
above the ground., However, he uses a real instead o‘f a complex
height, which is easier to interpret, but not as accurate., Logan
(1959) and L.ogan and Yee (1962) interpret ground wave modes as
wave guide modes inside a leaky waveguide with the upper wall at

a real height of about l\)/kl -a,



Kel}er(l958) and Keller and Le;y (1963) ;sr; tl;e concept of
rays in complex space in connection with diffraction in trying to
solve the following problem: find a straight line through a given
point tangent to a given surface (i, e., a surface caustic), The
problem has two solutions, If the given point is on the convex
side of the surface, the solutions are simple and easy to
visualize. If the given point is on the concave side of the surface,
then two solutions still exist, but the point of tangency with the
surface is in complex space. Keller calls such rays imaginary

rays.
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APPENDIX G
EVALUATING THE DIFFRACTION COEFFICIENT (EXCITATION
FACTOR) BY COMPARING THE GEOMETRICAL THEORY
OF DIFFRACTION SOLUTION WITH THE RIGOROUS
SOLUTION FOR A DISTANT SOURCE AND A
RECEIVER AT r = v/k

Following the method of Levy and Keller (1959), I will calculate
the field of the ground wave excited by a source elevated from the
sphere when the observer is in the shadow of the sphere by first cal-
culating the field using the geometrical theory of diffraction with an
unknown diffraction coefficient, and then comparing this with the
known rigorous solution to calculate the diffraction coefficient. My
derivation differs from Keller's in two ways:

1) Rather than assume the incident rays graze the earth, it

assumes they graze a circle of radius %

2) The diffraction coefficient is dimensionless and gives

the fraction of the incident field which is converted to a dif-

fracted ray. Keller's diffraction coefficient has the dimensions

1

of length z,

From the viewpoint of the geometrical theory of diffraction, the
main contribution to the field at the observation point follows the ray
shown in figure 16 (a straight line of length £ from the source, tan-

V

gent to the sphere of radius K’ then a ray which follows the curvature

of the sphere for an angle § - 6, to the observer). Both antennas

are short vertical dipoles. The solution using the geometrical

theory of diffraction is the product of several factors:
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The incident field at the sphere
-ikd

e

ikl 7

cOs 90 3 (G_l)

the diffraction coefficient, which gives the fraction of the incident
field converted to a ground wave,

D; ' (G-2)
the phase integral contribution in traveling along the arc from the
diffraction point to the observation point,

o~ PV(B - 85) ; (G-3)
and a convergence factor due to azimuth focusing of rays traveling

around the earth,

in 0
eyl (G-4)

Taking the product of (G-1), (G-2), (G-3), and (G-4) gives

e_ﬂd iv(0 - 84) sin 0
=i - - Yo —_ 0 -
Eq = ikL 7 cos 0o D e o . (G-5)
From figure 16,
A
cos By = 5 (G-6)
and
sin 8, = & (G-7)
in 84 = i -

Substituting into (G-5) gives

-ik{
g € Y -iv(0 - 84) [
E, = ik¢ = ° — -
o =ikl De Jvsme »  (G-8)
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or
) -ikf -iv(6 - 6y)
D
E, = iLL e _-\){3 e (G-9)
N/ be J/8in 6
From figure 16,
1= fo2 (2 (G-10)
and
8o = cos_l-l-(\% . (G-11)
From (G-9), (G-10), and (G-11),
-l v
. -i/\/(kb)E - V° -iv(f - cos T —)
ILvD
o = iLv e e kb (G-12)

b%<b2 - <§>2>%’- J/sin 8

The rigorous solution (for one mode) from (E-32) for r = 1% is

(2) (=)
H ™ (kb) H ™" (v)

B oo AL e"im/4 <k_a>—§- N -ive ﬂ/g
° =/ VNE .= 2 /5in 6 2 wy (t)°
¥ ()7 s

— . (G-13)
t-q

Using the simpler Hankel approximation,
(=) (2NF
FE T w21 (E)F w0, (G-14)

and the Debye approximation,

(@) i/4 i JIRBY =V iy cos-li%

/T H\) (kb) ~ <b2 - <X>2y}

k
gives ‘
. L Ty -1 v
E = ily/mm v e-lvewl(O) e (kb)™ - v elv €os b (G-16)
°TTE = (t - q°) 2 VNNT s
b% Jsin 6 (» -(3) w0

» (G-15)
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Comparing with (G-12) gives

~2i 4T w,(0)

Tt-g° wy (t)

(G-17)
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APPENDIX H

EFFECT OF THE TRANSMITTER'S BEING CLOSE TO THE GROUND—
EVALUATING R»L BY COMPARING THE GEOMETRICAL THEORY
OF DIFFRACTION SOLUTION WITH THE RIGOROUS SOLUTION

In the previous example, the source was far from the earth, so

that the incident field was only the far-zone radiation field. If the

source is close to the earth, the incident field effective in exciting a
ground wave will be different. Assuming that the effective incident
field is equal to the far-zone radiation field times a factor R, we can

£
determine R, by comparing the GTD solution with the rigorous solution

£
for both the source and observation point at a height Vv/k-a, separated
by a central earth angle 6. The total solution is the product of several
factors (see figure 17); The effective incident field a small distance ¢
from the transmitter, '

lkL R . (H_l)

the diffraction coefficient,

2/ wy (0) -
D= i@ W@ (H-2)

the phase integral along the arc connecting the transmitter with the

receiver,
e—l\)e ; (H-3)
a convergence factor due to azimuthal focusing,
sin By
. sing8 (F-4)
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where

L

sin 8y = (H-5)
YN
kL
Taking the product of (H-1) through (H-4) and using (H-5), we get
% R’y 2/ wy(0) _-ive
E = K L —= - Wl(t)g e (H-6)
NG d 1 W a/sin B
The rigorous solution for one mode from (E-32) for b =r = E is
__iL  Jw NIE Ka ~3 -itt/4  -iv8
I S ( 2 > N ©
< G G
Vk k
rr 5 5 - (H-7)
wy (t) t-q
The simpler Hankel approximation,
(a) 5 )
ﬁ H ( i 2 0) ~ i 2 (0)
v V) = i 5 wy (0) =~ T Wy, , (H-8)
is valid for v =~ ka. (H-9)
Substituting into (H-7) gives
_ ?r’ s /4 _-ive w (0)?
E= 1L @ ka> © wy (87 t-q?

Vv sin 9

(H-10)
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Comparing (H-6) with (H-10) we have

1
_ ka8 L im/4
R, = <—2> fa— e w (0). (H-11)
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APPENDIX I

HEIGHT GAIN FUNCTIONS— THE HEIGHT PROFILE OF
THE GROUNDWAVE

The dlffra.ctmn coe£f1c1ent calculated in appendix G allows us to

A%
calculate the strength of the ground wave at the radius r = x given

the incident field at the radius % To find the signal strength at
other heights, it is necessary to find the height variation of signal
strength in the ground wave. From (E-32) the vertical electric
field varies as
(2)
k
H " (kr)

—_ . (1-1)

re

Defining the height gain function G as the ratio of electric field at r
Vo,
to that at r = % gives
(kr)

Gv(r)‘ (2) (kr> . - (1-2)

The Hankel approximation,

. |
/E S er) a2l vt (v) (1-3)
’ - F

where

% (- y)% = kr)® - V¥ - v cos T L, (1-4)

kr

and the simpler Hankel approximation,

5 O e W E () w0, (1-5)



126

give

1
3 1 v
a0 =(ZF (Y Ll mll g
v <kr \2> (re _ ('E')z)TE w, (0)

If v~ kr, then it is also valid to use the simpler Hankel approxima-

tion,

~ 1
3

/5_21 I-IV(E)(kr) ~d ﬁz‘—- (

<N

wily) (I-7)
where
1
y=(2F - . (1-8)

Using (I-5) and (I-7) in (I-2) gives

1
VNS waly) ((%)F(V - kr)
~\ kr w4 (0) w, (0)

G (1-9)

This height gain function can be used to calculate the effect of
elevating either the transmitter or receiver. Although height gain
functions are usually defined relative to the ground, I have defined
the one in (I-9) relative to the sphere of radius I\:-because that is a

more natural height in the theory.
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APPENDIX J
EVALUATING THE SHEDDING COEFFICIENTS BY COMPARING
THE GEOMETRICAL THEORY OF DIFFRACTION
SOLUTION WITH THE RIGOROUS SOLUTION
It is possible to use the height gain function to calculate the field
of the ground wave at any height. For large heights this is not the
most convenient method because the product of a Legendre function
and a Hankel function can then be interpreted as giving the radiation
field of a ray tangent to the sphere E . Thus it is only necessary to
calculate a coefficient which gives the ratio of the effective strength
of the radiation field to the strength of the ground wave at the height
~.a
X .
The ray path connecting the source (at a distance b from the
center of the earth) to the observer (at a distance r from the center
of the earth) is a straight line of length f1from the source to the
point of tangency with the sphere,an arc of length (6 - 8, - 6;) along
the sphere, and a straight line of length £; leaving the sphere%

tangentially and arriving at the observer. Both the transmitting and

receiving antennas are short vertical dipoles (see fig. 18). The

geometrical theory of diffraction gives the total field at the
observation point as. the product of several factors: The

A
incident field at the sphere —,

-ikd,

iKL —— cos 0y ; (J-1)
£
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the diffraction coefficient,

2i M wy (0)

D=- -
t-q° Wy (t)* ’

(J-2)

the phase integral contribution in traveling along the arc from the
diffraction point to the shedding point,

e-i V(B -8, -863) ) (J-3)

b

a shedding coefficient, which gives the ratio of the far zone radiation .
field to the near field at a small distance £ from the point of shedding,

S, 3 (T-4)

the phase integral contribution in traveling from the point of shed-
ding to the observation point,

e-lk L2 ; (J-5)

a divergence factor due to elevation defocusing of the ray in going

from a distance £ from the point of shedding to the observation point,

T
/E ; (J-6)

a convergence factor due to azimuth focusing of rays traveling

around the sphere,

; (J-7)

the pattérn factor of the vertical receiving antenna,

COs 92 . (J-S)
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Taking the product of (J-1) through (J-8) gives

E, =-iKL e_;lkll cos 6, f—t—fg %1-% e-iv(e -6, -62) Sl e—rikﬂz
X "}2" cos B3
From figure 18,
cos 0, =F\l)5 ,
sin 6, = % ,
cos B = E\f‘- .

Substituting into (J-9) we get

(3-9)

(J-10)

(J-11)

(3-12)

_5_ _. _. _. - -
o - "3 58 2
kgﬁgrBNMIJQ wa () Jsin 6 (t-49°)

From figure 18,

0, = cos 1y s
1

8, = cos T — ,

Substituting into (J-13) gives

(J-13)

(J-14)

(J-15)

(J-16)

(J-17)
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- "'"'ZLV%J_ML«/"wl(O)
0o =TT =
K2 B2 2<b2 <>27< <>2>4 (t - q°) wy (t)° J/5in
e“'iA/(kb)d ~V° e-i/\/(kr)z -v° e-i\) (6 - cos-]'i% - cos_lﬁ
(7-18)

The rigorous solution for one mode from (E-32) is

=]
_-iL /T rkaNE/ 2NF OV -i /4 -ive
Eo—k_gs aE BE (2) (k) ,\/s1n6e ©
(=)
(kb) H ™ (kr)
Tk 2
( ) w, (t)° t-q° ° (7-19)

Using the Debye approximations,

[ 9 g T o
2

nk (kb) ~ kb
G-

eirr/4 -1/ (kr)® -V° v cos ™t

kr

CEODi ’

Tk
> (J-20)

Hv(z) (kr) ~

gives

) £ 1TT/4:
“F O e

e—i\)e e-iA/(kb)E -VF e-iA/(kr)2 -v® o1V cos-l AANSN cos-l 2

kb e kr

Wy (t)g

Compa.rmg (J 18) with (J 21)we get

—1 ™/ 4
-3
Sz' w, (0) /_<ka> (J-22)
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APPENDIX K

APPLICATION OF THE GEOMETRICAL THEORY OF DIFFRACTION
TO MULTIHOP IONOSPHERIC SKY WAVE PROPAGATION

It is possible to apply the geometrical theory of diffraction to

the problem of terrestrial LF radio propagation below a concentric
ionosphere. If diffraction effects are important for the mth hop,
the receiver must be beyond the horizon of the mth sky wave so
that the rays arrive from the ionosphere tangent to a sphere of

v

radius K travel along that sphere, and leave the sphere tangen-

tially to reflect off the ionosphere again, etc., for each hop. This
path is indicated in figure 19,

The solution is the product of several factors: The incident

field at Py,
o -ik 4o -
ikL —3— cos B0 ; (K-1)
the diffraction coefficient giving the excitation of the groundwave at
Pi’ i=1=- m+l,
. 2iN T wy (0) — )
St wa(t)? )
the phase integral going from Pi to Qi’ i = 1= mtl
e -1voci; o #—(K.—ﬁ —
the shedding coefficient at Qi’ i = 1 = m+tl, giving the strength

of the radiation field a small distance £ from Qi’

e-iﬂ/4 1/ 8 1/2'

2 a S,
S& = 1 (0) (ka) (T) H (K-4)

the ionospheric reflection coefficient and the phase integral going

from Qi to Py, i =1~ m, for the ith hop,
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-2ikd,
Te i -

H

(K-5)

a convergence factor due to elevation focusing of the ith hop by the

2
(+)

ionosphere,

[derived from (Wait, 1962b)

vV
¢\ g [ETK% Y s/
(——;) Z_ -——-——-——V sin ei] . (K-7)
2 T i Lg cos Oi— T
Since the rays arriving at Pi+ 1 from the ionosphere graze the sphere
v
T S
cos 8, = = (K=8)

Substituting (K-8) into (K-7) shows that the convergence coefficient di-

verges, indicating a caustic in the field incident at Pi . Because of

+1
this it is more convenient to calculate the field a small distance,
‘ v [ -1 v
= 22 - — Z
L = <Gi cos kg) , (K-9)

beyond the caustic. Then (K-7) gives the ratio of the field at a small

distance 4’ from Pi

+1 to that at a small distance 4 from Qi as (K—6)] ;

the effective excitation factor for a point source (because the caustic

in the incident field at P, , is similar to a source at P,  .),
i+ 1 i+l

. /e g2 \t/ 2 .
Ry: = ¢1”/4$3v1 (0)(1‘3‘?5 (%) (K-10)

for i = 1— m; a divergence factor due to elevation defocusing going

from Qm+1to 0’
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1/=

£
(,{/ ) > (K~11)
m+1
the phase integral from Qm+l to 0,
-ik4
e mey; (K-12)
the receiving antenna gain factor,
V e
= -13
cos ern-l—l kr’ (K-13)

a convergence factor due to azimuthal focusing,

Since

and

Voo,
K S51n eo o
e (K-14)

Y .
cos 8o = = (K-15)
sin 8, = % , (K-16)

the product of (K-1) through (K-6) and (K-10) through (K-14) is

€

-ik4g . m+1
e Vv m+l -iv
. — G‘.
ikL = = D e igl i
- m+1l |
A 1/6(i)1/2 ) m L )1/2 m
w1 (0) 2 T © 77
) 1/s 112 - 1/2 )
elﬂ/4w1(0) (lza.) (,f, ( e ) . ik et
a m+1

v, Ao
o /(E) (“g) -
kr) r sing °’ (K-17)
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where
m+ 1 -
. > a. = 0 - 6o —Zmei- 9m+1 =« (K-18)
i=1
is independent of the OLi.
Using (K-2) in (K-17) gives
- -im/4 -ikdo -ikd | - -iva °/2 |
e = Le e e m+1 ZN[TTe Y] (_2_ 1/63.1/2
Y ENRYERTETIRE 1/ 2 [ e 2 ka
k®/%b r Lo Lrn+1 [sin 8 (t-q° )wa(t)
-2i m
2N e 2HHW(0) -
. (K-19)

t-q° wy (t)°

Many similar paths connect the transmitter and receiver. For B

instance, assuming that excitation of a ground wave and shedding
from a ground wave take negligible space to 6ccur, thena, can ——
vary from zero to a. (Actually, the rigorous solution from

appendix E shows that this assumption is only a good approxima-~ "
tion if the frequency is high enough, In fact, q; may vary from

0 to &, where @ is given by (E-65) as

a a
ool 2y (PR R
@ =a- ka 2

wa ()ws (£)(t-q?) + (m-1)iq + ?_-:t"%%)

I interpret the term on the right as the great circle angle needed to
excite a ground wave m+1 times and shed a ray m+1 times. For a
high enough frequency, it is only a small correction unless Q is
near zero.) If, then, & can vary from 0 to & then a3 can
vary from 0 to &-0,, and O3 can vary from 0 to Gz - 0y -Gz etc.
Thus, the total field at the receiver is a multiple integration over
all these paths., Assume that the observed field is equal to some

constant C times the integrator, that is,
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-0 . . . a4 &-ay -0z 8-a; O
E = f .. f f feCda1Cda2Cd0L3 .
m
0 0 0 0
Cda_ . (K-20)
m
m+ 1 L
Since the only dependence of e on any of the OLi is on 2 OLi = Q,e€

i=1

m -
and C may be taken outside the integrals. It is then easy to

integrate (K-20) to get

Cm&m
E === (K-21)
m m'!
Using

2 V7 S
Lo = [b° - (E) ) (K-22)

v 2 o

L = 7 (= -2
m+1 t U (K-23)

o
I

N A = I (K-24)

o Leim/ 4y 5 V5/2e-14 (kb)® -v® =i of (kr)?-V7_-iva e )1/3

moepifege/ a(bz-(ﬁf)l/ ’*(rz-(ﬁ)g)l /4[5 8 (t-q®)wy (17 °

and (K-19) in (K-21) gives

.,[ ‘a2 2
1 |2 ca Te 2V YT L) [T (K25
m! t-q° wy (t)° .

The rigorous solution for one mode from (E-63) is
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LT
1 :
g . _-Lizvane 4 (_13)1/3 Vo2 TV
m kzra/z ba/zm! sin 8 (rz_ (I\:_)z)l/zx (b2 - (_E_)z)l/él

e_w/(kr)z- Ve e_i\/(kb)z_ Ve -2iT& kal/3 e-Zi (kg)2 -V° m,,,,,, ,
wy (t)®  (t-q°) t-q° wi ()

ka L/
(3)

The agreement between (K-25 and (K-26) for C defined by (K-27)

Comparing gives

C= (K-27)

shows that my application of the geometrical theory of diffraction to
the problem of terrestrial LF radio propagation below a concentric

homogeneous ionosphere is valid, It also shows that the signal

&= -iva
S (K-28)
N sin ©

where a, given by (K-18), is the distance the ray travels along the

ground (the total distance between the transmitter and receiver

minus that taken up by the éky-wdve ﬁbégj.iTrl;isrgi;a s_é f;irTy

“simple and accurate formula to calculate the distance variation

of the mth hop in the shadow.



REFERENCES

Belrose, J. S., and M, J, Burke (1964), ""Study of the lower
ionoéphere using partial reflection: 1, Experimental
technique and methods of analysis, J. Geophys. Res.

69, No. 13, 2799-2818.

Berry, Leslie A, (1964a), '""Some remarks on the Watson trans-
formation and mode theory, Radio Sci. J. Res., 68D,

No. 1, 59-66. )

Berry, Leslie A, (1964b), "Computation of Hankel functions,
NBS Tech. Note 216.

Berry, Leslie A. (1964c), '"Wave-hop theory of long distance
propagation of low-frequency radio waves, Radio Sci.

J. Res. NBS 68D, No. 12, 1275-1284,

Berry, Leslie A,, and Mary E. Chrisman (1965a), "The path
integrals of LF/VLF wave hop theory, Radio Sci. J. Res.
NBS 69D, No. 11, 1469-1480.

Berry, Leslie A., and Mary E. Chrisman (1965b), '"Numerical
values of the path integrals for low and very low
frequencies, NBS Tech. Note 319,

Booker, H. G., and C. M. Crain (1967), "LF and VLF reflection
loss in the lower ionosphere: a theorem on absorption and
its application, Memorandum RM-5249-PR, Rand Corp.,
Santa Monica, Calif.

Bremmer, H. (1949), WiTerrestrial Radio ?Nia,\:es_;v’I'ihgo;yio?_ S
Propagation (Elsevier, New York),

Budden, K.G, (1961), "Radio Waves in the Ionosphere; the

Mathematical Theory of the Reflection of Radio Waves
from Stratified Ionised Layers (University Press,

Cambridge, England).

- 137 -



Epstein, Paul S. (1930), "Geometrical optics in absorbing media',

Proc, Nat, Acad. Sci, l_()_, 37-45,

Ha.ndBook of Mathematical Functions with Formulas, Graphisﬁ, rand
Mathematical Tables (1964), ed, Milton Abramowitz and
Irene A. Stegun (U.S. Gov't. Printing Office, Washington,
D. C.).

Handbook of Geophysics and Space Environments (1965), ed.
Shea L. Valley (McGraw Hill, New York).

Haselgrove, Jenifer (1954), "Ray theory and a new method for ray
tracing', Report of the Physical Society Conference on the
Physics of the Jonosphere, 355-364, (Physical Society,
London).

Johler, J. Ralph (1966), '"Zonal harmonics in low frequency
terrestrial radio wave propagation', NBS Tech, Note 335,

Johler, J., Ralph'and Leslie A, Berry (1962), '"Propagation of
terrestrial radio waves of long wave length; theory of zonal
harmonics with improved summation techniques", J, Res.
NBS 66D, No. 6, 737-773,

Johler, J. Ralph and Leslie A. Berry (1964), "A complete mode
sum for LF, VLF, ELF terrestrial radio wave fields',

NBS Monograph 78.

Johler, J. Ralph and John D, Harper (1962), '"Reflection and
transmission of radio waves at a continuously stratified
plasma with arbitrary magnetic induction', J. Res. NBS
66D, No, 1, 81-99.

Jones, Richard Michael (1966), "A three-dimensional ray tracing

computer program, "ESSA Tech. Rept. IER 17-ITSA 17,

“Keller, Joseph B, (1958), ""A geometrical theory of diffraction,

calculus of variations and its applications'', Proceedings
of Symposia in Applied Mathematics 8, 27-52, (McGraw Hill

for the American Mathematical Society, New York).



139

Keller, Joseph B. (1962), "Geometrical theory of diffraction',
J. Opt. Soc. Am. 52, No. 2, 116-130,

Keller, Joseph B., and Herbert B. Keller (1950), ""Determina-
tion of reflected and transmitted fields by geometrical ’
optics", J. Opt. Soc, Am. 40, No. 1, 48-52, ~

Keller, Joseph B., and Bertram R. Levy (1963), "Scattering of
short waves'’, Electromagnetic Scattering, ed. M. Kerker,
3-24, (Macmillan, New York),

Knecht, Robert W, (1965), ""The distribution of electrons in the
lower and middle ionosphere', Progress in Radio Science
1960-1963, ed. Geoffrey M. Brown, 3, 14-15, (Elsevier,
Amsterdam),

Kelso, John M. (1964), ""Radio Ray Propagatibn in the Ic;AnIOSphe;e",
(McGraw Hill, New York).

Kouyoumjian, Robert G. (1965), '""Asymptotic high-frequency
methods', Proc. IEEE 53, No. 8, 864-876.

Levy, Bertram R., and Joseph B. Keller (1959), 'Diffraction by
a smooth object", Commun Pure Appl. Math. 12, No. 1,
159-209.

Lewis, Robert M., Norman Bleistein, and Donald Ludwig (1967),
"Uniform asymptotic theory of creeping waves', Commun.
Pure Appl. Math. 20, No. 2, 295-328.

‘Logan, Nelson A. (1959), '"General research in diffraction theory",
Lockheed Missiles and Space Division Rept., LLMSD-
288087 and -288088.

Logan, Nelson A,, and K, S. Yee (1962), "A mathematical
model for diffraction, Electromagnetic waves'’
Proceedings of a Symposium Conducted by the Mathematics
Research Center, U, S. Army at the Uﬁiversity of
Wisconsin, Madison, April 10-12, 1961, ed. Rudolph E.

Langer, 139-180 (University of Wisconsin Press, Madison).



Ludwig, Donald (1966), ”Uniforn?asymptotic ex;.nsions at a
caustic", Commun. Pure Appl. Math. 19, No. 2, 215-250,

Rugg, Donald E, (1967), "Theoretical investigation of the diurnal
phase and amplitude variations of VLF signals', Radio v
Sci, 2, No. 6, 551~556,

Titheridge, J. E. (1967), "Calculation of the virtual height and
absorption of radio waves in the ionosphere', Radio Sci. 2,
No. 2, 133-138.

Wait, James R. (1960), "Terrestrial propagation of VLF radio
waves', J, Res, NBS%Q,_NO- 2, 153-204,

Wait, James R. (1961), "A diffraction theory for LF sky-wave
propagation'!, J. Geophys. Res. 66, No, 6, 1713-1723.

Wait, James R. (1962a), 'Mode conversion in the earth-
ionosphere waveguide'', NBS Tech. Note 151.

Wait, James R, (1962b), 'Introduction to the theory of VLF
propagation'’, Proc. IRE 50, No. 7, 1624-1647.

Wait, James R. (1962c), "Electromagnetic waves in stratified
media" (Macmillan, New York).

Wait, James R, (1964a), "Eleétromagnetic surface waves!'y,
Advances in Radio Research, ed, J. A, Saxton, 157-217,
(Academic Press, London and New York).

Wait, James R. (1964b), "Two-dimensional treatment of mode
theory of the propagation of VLF radio waves', Radio
Sci. J. Res, 68D, No. 1, 81-93,

Wait, James R, (1964c), ""On phase changes in very-low-
frequency propagation induced by an ionospheric depression
of finite extent", J. Geophys. Res, _éﬁ, No, 3, 441-445,

Wait, James R. (1964d), 'Influence of a circular ionospheric

depression on VLF propagation'', Radio Sci. J. Res. 68D,

No. 8, 907-914.



141

Wait, James R. (1967a), "ﬁiliéctx:c_);nég”r:éﬁc';hiSPering Jg;falleryr
modes in a dielectric rod'", Radio Sci. 2, No, 9, 1005-1017.

Wait, James R. (1967b), '"Applications and of the mode theory of
long wave radio propagation, M, F., L. F,, and V, L, F, "
Radio Propagation Conference Publication No, 36, 57-62,
(Institution of Electrical Engineers, London).

Wait, James R., and Alyce M. Conda (1958), ''Pattern of an
antenna on a curved lossy surface', IRE Trans. Ant.

Prop. AP-6,: No. 4, 348-359,

Wait, James R. and Alyce M. Conda (1959), ""Diffraction of
electromagnetic waves by smooth obstacles for grazing
angles't, J. Res. NBS 63D, No. 2, 181-197.

Wait, James R., and Lillie C, Walters (1963), '"Reflection of VLF
radio waves from an inhomogeneous ionosphere: Part 1,
Exponentially varying isotropic model't, J. Res, NBS 67D,
No. 3, 361-367.

Watson, G. N. (1918), "The diffraction of electric waves by the
earth", Proc., Royal Soc. of London 95A, No, 666, 83-99.

Watson, G. N. (1919), "The transmission of electric waves round
the earth'", Proc, Royal Soc, of London 95A, No. 673,
546-563.



142

ADDITIONAL BIBLIOGRAPHY

Altman, C. (1965), 'Use of the phase-integral method to deter-
mine the reflection properties of a stratified ionosphere",
Radio Sci, J. Res. é_‘_)g, No, 4, 511-519,

Bremmer, H, (1951), '"The W, K, B, approximation as the first
term of a geometric-optical series', Commun., Pure Appl.
Math, 4, No, 1, 105(S169)-115(S179).

Budden, K. G. (1961), '""The wave-guide mode theory of wave
propagation'' (Prentice-Hall, Englewood, Cliffs, N.J.).

Budden, K. G. (1964), '"Lectures on magneto-ionic theory"
(Gordon and Breach, New York).

Budden, K. G. (1965), "Effect of electron collisions on the
formulas of magneto-ionic theory'", Radio Sci, J. Res.
69D, No. 2, 191-211.

Clemmow, P.C. (1966), "The plane wave spectrum representa-
tion of electromagnetic fields" ('Pergamon Press,
Oxford).

Cooper, Elisabeth A, (1964), '"Phase integral calculations of
ionospheric reflections including a variable collision
frequency", J. Atmosph., Terr, Phys. 26, No. 10,
995-1005,

Felsen, L. B,, and N, Marcuvitz (1959), '""Modal analysis and

synthesis: Chap, 4, Asymptotic evaluation of integrals",

Air Force Cambridge Research Center Tech. Note

AFCRC-TN-59-991. - -
Fock, V. A. (1965), "Electromagnetic Diffraction and Fropaga-

tion Prc;bié;xlé;' V(Pergarﬁion?r;sis, Oxford).

wave functions for propagation in stratified media', J.

Atmosph, Terr, Phys. 26, No. 3, 335-340.



143

Hines, C. O. (1951), "Wave packets, the poynting ve(;tor, and
energy flow: Part 1, Non-dissipative (anisotropic),
homogeneous media', J. Geophys. Res, 56, No. 1, 63-72.

Hines, C. O. (1951), "Wave packets, the poynting vector,
and energy flow: Part 2, Group propagation through
dissipative isotropic media", J, Geophys, Res. 56,

No. 2, 197-206.

Hines, C, O, (1951), '"Wave packets, the poynting vector, and
energy flow: Part 3, Packet propagation through
dissipative anisotropic media'’, J. Geophys. Res, 56,

No. 2, 207-220.,

Hines, C. O. (1951), 'Wave packets, the poynting vector, and
energy flow: Part 4, Poynting and MacDonald velocities in
dissipative anisotropic media (conclusion), J., Geophys.
Res, éé, No. 4, 535-544,

Johler, J. Ralph (1961), '"On the analysis of LF ionospheric
radio propagation phenomena', J. Res, NBS 65D, No. 5,
507-529.

Johler, J. Ralph (1962), '"Propagation of the low-frequency radio
signal", Proc. IRE 50, No, 4, 404-427.

Johler, J, Ralph (1964), '"Concerning limitations and further
corrections to geometric-optical theory for LF, VLF
propagation between the ionosphere and the ground, Radio
Sci, J. Res. NBS _63_8_2, No. 1, 67-68,

Johler, J. Ralph, W. J. Kellar, and Lillie C, Walters (1956),
'"Phase of the low radio frequency groundwave'),

NBS Circular 573,

Johler, J. Ralph and Lillie C. Walters (1960), "On the theory of

reflection and low~ and very-low-radio frequency waves

from the ionosphere't, J. Res, NBS 64D, No. 3, 269-285,



Johler, J. Ralph, Lillie C. Walters, and J. D. Harper (1960),
"Low~ and very-low-radio frequency model ionosphere
reflection coefficients'', NBS Tech, Note 69,

Johler, J. Ralph, Lillie C, Walters, and C. M, Lilley (1960),

" Amplitude and phase of the low- and very-low-radio
frequency ground wave'', NBS Tech, Note 60, PB 161 561.

Kline, Morris (1951), '""An asymptotic solution of Maxwell's
equations'', Commun, Pure Appl, Math, 4, No. 2/ 3,
225(5225)-262(S262).

Kline, Morris and Irvin W. Kay (1965), "Electromagnetic theory
and geometrical optics" (Interscience Publishers,

New York).

Levy, Bertram R., and Joseph B. Keller (1960), '"Diffraction
by a spheroid', Can, J, Phys. 38, No. 1, 128-144,

Ludwig, Donald (1967), '"Uniform asymptotic expansion of the
field scattered by a convex object at high frequencies',
Commun, Pure Appl. Math, 20, No. 1, 103-138,

Morgenstern, J. C. and J Ralph Johler (1965) ~""Attenuation of

the groundwave of a low frequency electromagnetic pulse',
NBS Tech, Note 310.
Norton, Kenneth A. (1959), "Transmission loss in radio

propagation 2'', NBS Tech, Note 12, PB151 371,

Proceedings of the Sympos1um on Qua51 Opt1cs New York
June 8-10, 1964 (1964), (Polytechnic Press, New York).
Schulkunoff, S. A. (1951), "Remarks concerning wave propaga&on
in stratified media'', Commun, Pure Appl. Math. 4, No. 1,
117(S181)-128(S192).

The Theory of Electromagnet1c Waves a Symposium June 6-8,

1950 (1951), (Interscience Fublishers, New York).



145

Trotter, Hale F,, and John W, Tukey (1956), '"Conditional Monte

Wait,

Wait,

Wait,

Wait,

Wait,

Wait,

Carlo for normal samples', Symposium on Monte Carlo
Methods held at the University of Florida, March 16 and
17, 1954, 64-79 (John Wiley, New York).

James R. (1960), A survey and bibliography of recent
research in the propagation of VLF radio waves',

NBS Tech. Note 58, PB161 559,

James R. (1961), '""A new approach to the mode theory of
VLF propagation', J, Res, NBS 6_59, No, 1, 37-46.

James R. (1963), "Influence of the lower ionosphere on
propagation of VLF waves to great distances', J. Res.

NBS 67D, No, 4, 375-381,

James R, (1965), "Concerning the mechanism of reflection
of electromagnetic waves from an inhomogeneous lossy
plasma'!, Radio Sci. J. Res. 69D, No. 6, 865-869.

James R, , and Kenneth P, Spies (1960), '"Influence of
earth curvature and the terrestrial magnetic field on

VLF propagation", J. Geophys. Res., 65, No, 8,7 2325-2329,
James R. and Kenneth P, Spies (1964), ""Characteristics of
the earth-iondsphere waveguide for VLF radio waves'',

NBS Tech, Note 300,

Wait, James R,, and Lillie C, Walters (1963), '""Reflection of VLF

Wait,

radio waves from an inhomogeneous ionosphere: Part 2,
Perturbed exponential model, J. Res. NBS 67D, No. 5,
519-523. '

James R.,, and Lillie C, Walters (1963), "Reflection of
VLF radio waves from an inhomogeneous ionosphere:
Part 3, Exponential model with hyperbolic transition'’,

J. Res. NBS 67D, No, 6, 747-752.



146

Wait, James R., and Lillie C. Walters (1964), 'Reflection of
electromagnetic waves from a lossy magnetoplasma, '
Radio Sci, J. Res. 68D, No, 1, 95-101.

Walters, Lillie C., and J. Ralph Johler (1962), '"On the
diffraction of spherical radio waves by a finitely
conducting spherical earth', J. Res. NBS 66D, No, 1
101-106. '

Walters, Lillie C., and James R. Wait (1963), "Numerical
calculations for reflection of electromagnetic waves from
a lossy magnetoplasma'l, NBSW'Tie’a'l_.—i\fogmzo&

Yabroff, Irving (1961), "Computation of Whistler ray paths'},
J. Res. NBS 65D, No. 5, 485-505.

Zauderer, Erich (1967), "An integral representation approach
to diffraction by a smooth object", J. Math., Anal.

Appl. 18, No. 1, 17-37.
Zauderer, Erich (1964), "Wave propagation around a convex

cylinder', J. Math. Mech. 13, No, 2, 171-186,





