The Impact of Aeolus Satellite and Airborne Doppler Wind Lidar Measured Wind Profiles on Numerical Simulations of Tropical Cyclones and Tropical Convection

Zhaoxia Pu

Department of Atmospheric Sciences, University of Utah

Chengfeng Feng, Xin Li

Department of Atmospheric Sciences, University of Utah

Jun Zhang, Robert Atlas

G. David Emmitt

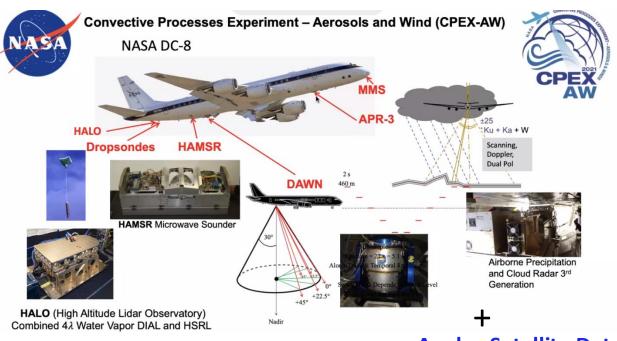
Simpson Weather Associates, Inc.

Amin R. Nehrir, Kristopher M. Bedka

NASA Langley Research Center

Workshop on Space-based 3D Winds February 19-20, 2025 College Park, MD

Background and Motivation


- Tropical cyclones and tropical convection are essential components of weather and climate.
- In-situ data are commonly sparse over the tropical ocean.
- Doppler wind lidar (DWL) measurements provide valuable data sources of 3-dimensional winds through the wind profiles.
 - ESA Aeolus Satellite
 - Airborne DWL measurements from recent NOAA and NASA research and operational field campaigns
- What are the impacts of assimilation of DWL wind profiles on numerical simulations of tropical cyclones and tropical convection during recent research and operational field campaigns?
- What implications did we obtain for the observing system and data assimilation?

Data Assimilation during NASA CEPX-AW 2021

CEPX-AW Field data. (August 2021)

Aug 24-25, 2022

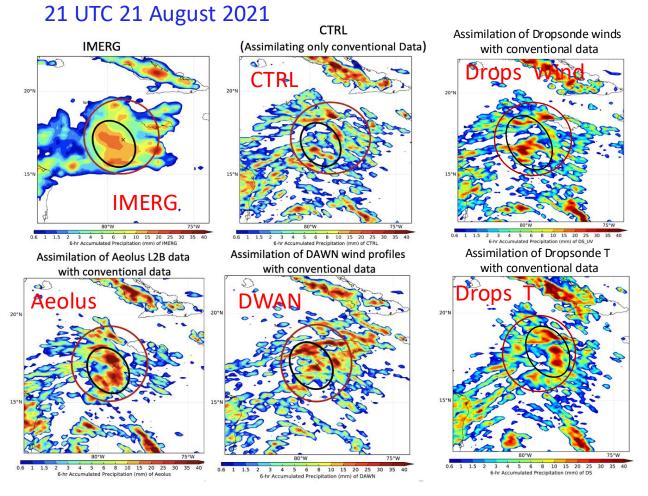
DAWN (Doppler Aerosol WiNd) lidar system

Aeolus Satellite Data

NCEP GSI-Based 3D Ensemble-Variational Hybrid Data Assimilation (3DEnVAR) for WRF and HWRF

$$J(x) = \frac{1}{2} (x - x^b)^T (\beta_1 B_1 + \beta_2 B_2)^{-1} (x - x^b) + \frac{1}{2} (y^0 - H(x))^T R^{-1} (y^0 - H(x))$$

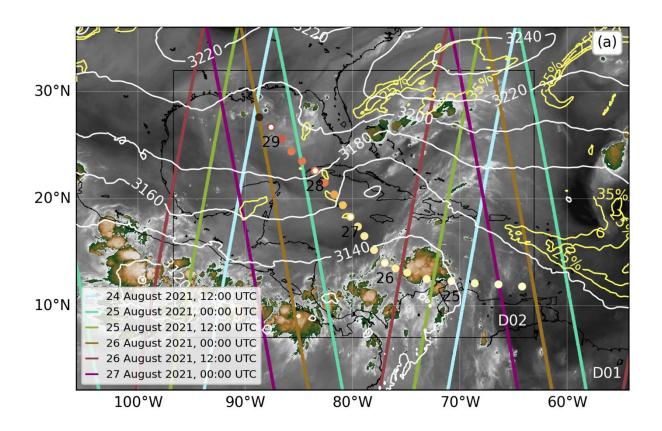
 B_1 : Static, pre-generated matrix using NMC method


 B_2 : A flow-depend matrix derived from ensemble forecasts

Weighting factors: eta_1 and eta_2

When $\beta_2 = 0$ -- 3DVAR

Data Assimilation during NASA CEPX-AW 2021: Data Impact


- Mesoscale community Weather Research and Forecasting (WRF) model at cloud permitting scale (~ 3 km)
- NCEP GSI-based hybrid ensemble-3DVAR (3DEnVAR) data assimilation system
- Control (CTRL) simulation assimilates all routine conventional observations used in operational NWP.
- The impact of field observations and Aeolus satellite data on numerical simulations of tropical convection systems and their environmental conditions are examined.
- For Aeolus data assimilation, L2B (Rayleighclear and Mie-cloudy) data are assimilated.

- 6-hr accumulated precipitations of different experiments with a 10 X 10 degree box centered at the location of AEW (indicated by black cross).
- Compared with CTRL, assimilation of Aeolus L2B data, DAWN wind profiles, and dropsonde data helps the model to reproduce more organized convection in the critical regions associated with AEW.

Assimilation of Aeolus Horizontal LOS -- Hurricane Ida

Ida's track - Aeolus LOS obs.

Feng and Pu (2023)

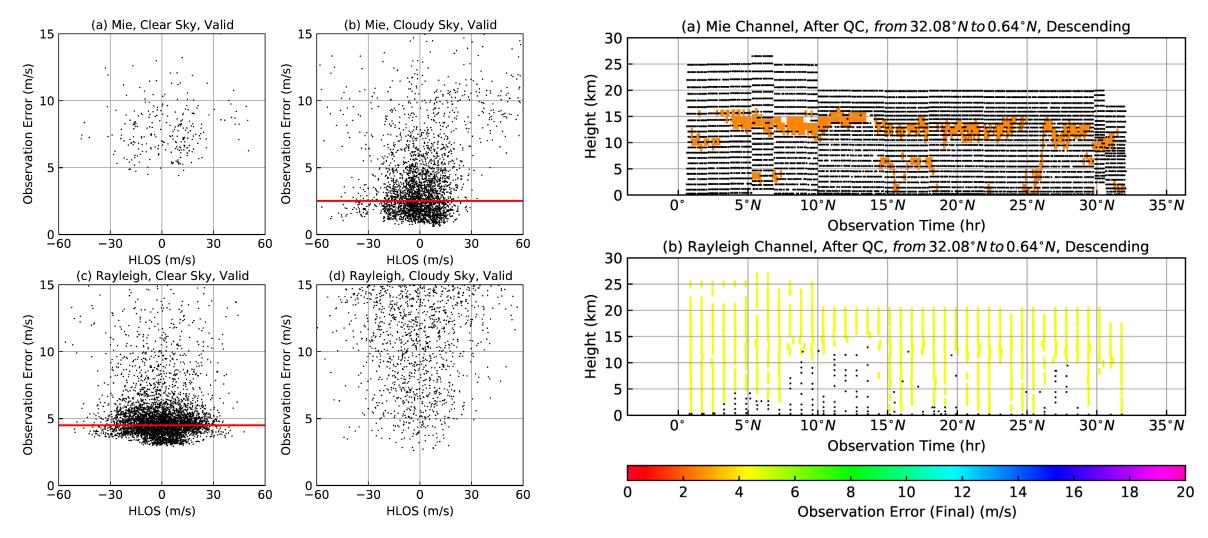
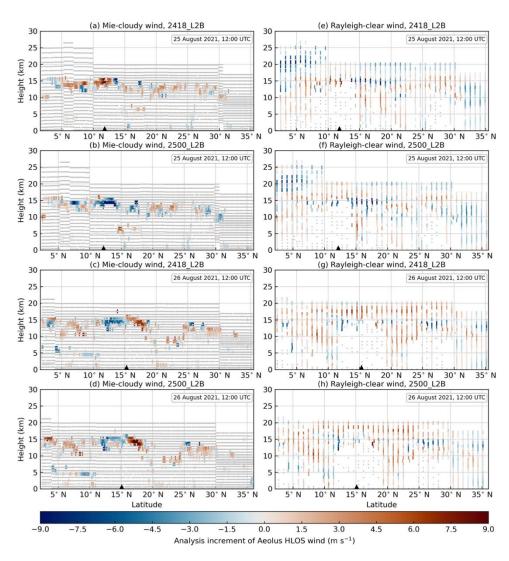

List of Experiments

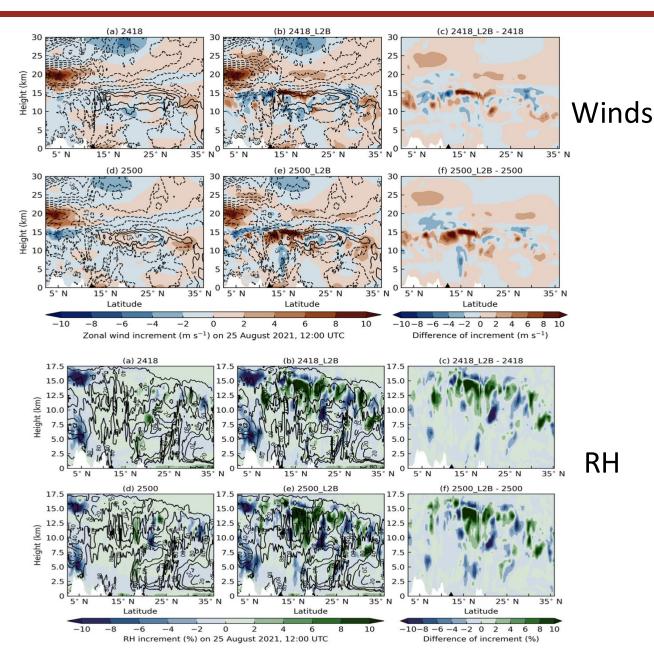
Table 3. List of experiment configurations.

Experiment	Case	Initial time	Cycling DA period	Horizontal scale (km)	Vertical scale (grid units)	DA observation	48 h forecasts initialized from DA cycles 5–8
2406	Ida	24 August 2021, 06:00 UTC	From 24 August 2021, 12:00 UTC, to 26 August 2021, 06:00 UTC (3DEnVAR)	110	3	NCEP GDAS data	
2406_L2B	Ida	24 August 2021, 06:00 UTC	From 24 August 2021, 12:00 UTC, to 26 August 2021, 06:00 UTC (3DEnVAR)	110	3	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2412	Ida	24 August 2021, 12:00 UTC	From 24 August 2021, 18:00 UTC, to 26 August 2021, 12:00 UTC (3DEnVAR)	110	3	NCEP GDAS data	48 h forecasts initialized from DA cycles 5–8
2412_L2B	Ida	24 August 2021, 12:00 UTC	From 24 August 2021, 18:00 UTC, to 26 August 2021, 12:00 UTC (3DEnVAR)	110	3	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2418	Ida	24 August 2021, 18:00 UTC	From 25 August 2021, 00:00 UTC, to 26 August 2021, 18:00 UTC (3DEnVAR)	110	3	NCEP GDAS data	48 h forecasts initialized from DA cycles 5–8
2418_L2B	Ida	24 August 2021, 18:00 UTC	From 25 August 2021, 00:00 UTC, to 26 August 2021, 18:00 UTC (3DEnVAR)	110	3	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2500	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	110	3	NCEP GDAS data	48 h forecasts initialized from DA cycles 5–8
2500_L2B	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	110	3	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2500_L2B_H1	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	55	3	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2500_L2B_H2	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	27 August 2021, 00:00 UTC Aeole		NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2500_L2B_V1	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	110	1.5	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
2500_L2B_V2	Ida	25 August 2021, 00:00 UTC	From 25 August 2021, 06:00 UTC, to 27 August 2021, 00:00 UTC (3DEnVAR)	110	6	NCEP GDAS data, Aeolus L2B HLOS winds	48 h forecasts initialized from DA cycles 5–8
1918	MCS	19 August 2021, 18:00 UTC	From 20 August 2021, 00:00 UTC, to 21 August 2021, 00:00 UTC (3DVAR)			NCEP GDAS data	30 h forecasts initialized from DA cycle 5
1918_L2B	MCS	19 August 2021, 18:00 UTC	From 20 August 2021, 00:00 UTC, to 21 August 2021, 00:00 UTC (3DVAR)	1	1	NCEP GDAS data, Aeolus L2B HLOS winds	30 h forecasts initialized from DA cycle 5

A slash (/) indicates that the horizontal and vertical localization scales are not needed

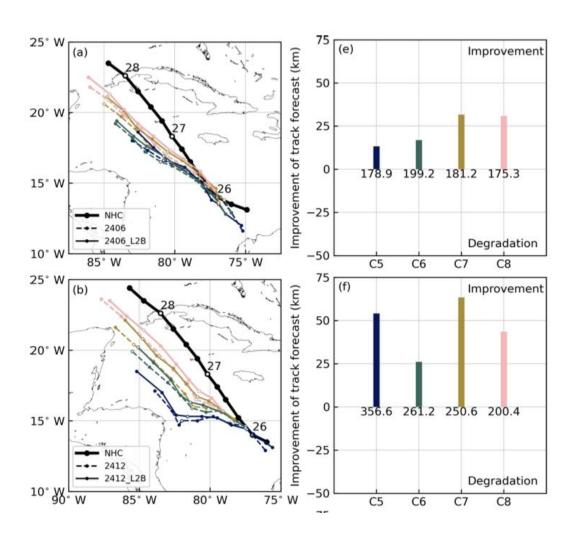
Aeolus Data Assimilation during NASA CEPX-AW 2021: Observation Errors & QC

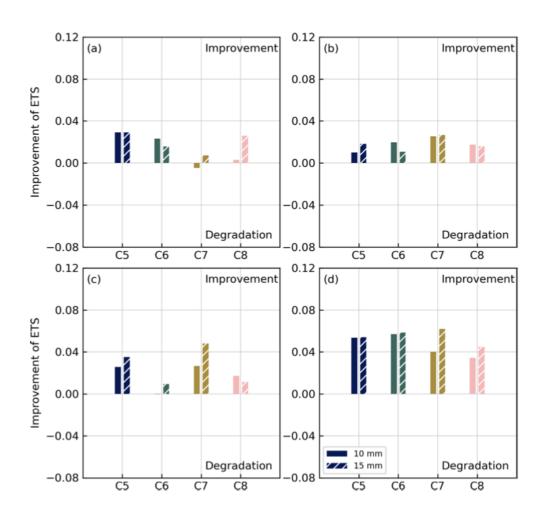



The observation errors in Mie Cloudy (Rayleigh Clear) are set to 2.5 m/s (4.5 m/s).

August 25, 2021

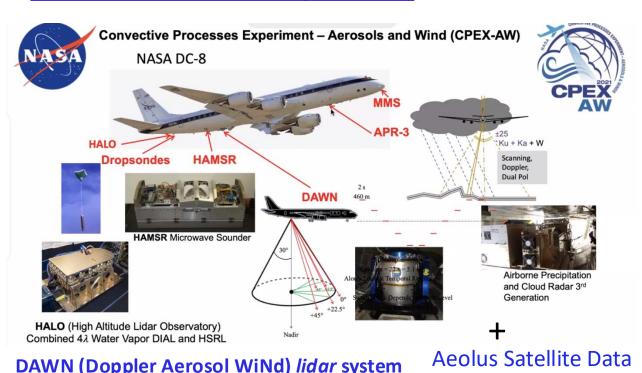
Analysis Increments



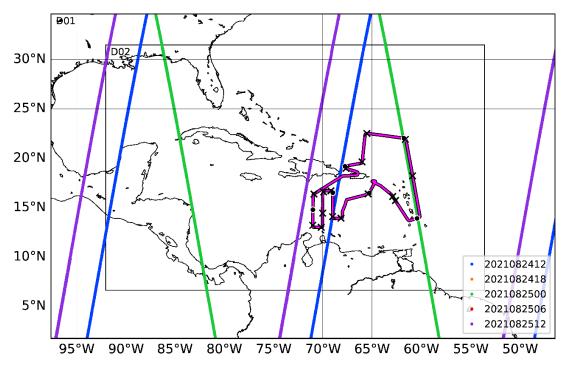


Forecast Improvements

Track



Precipitation



Data Assimilation during NASA CEPX-AW (2021) and CPEX-CV (2022)

CEPX-AW Field data. (August 2021)

Aug 24-25, 2022

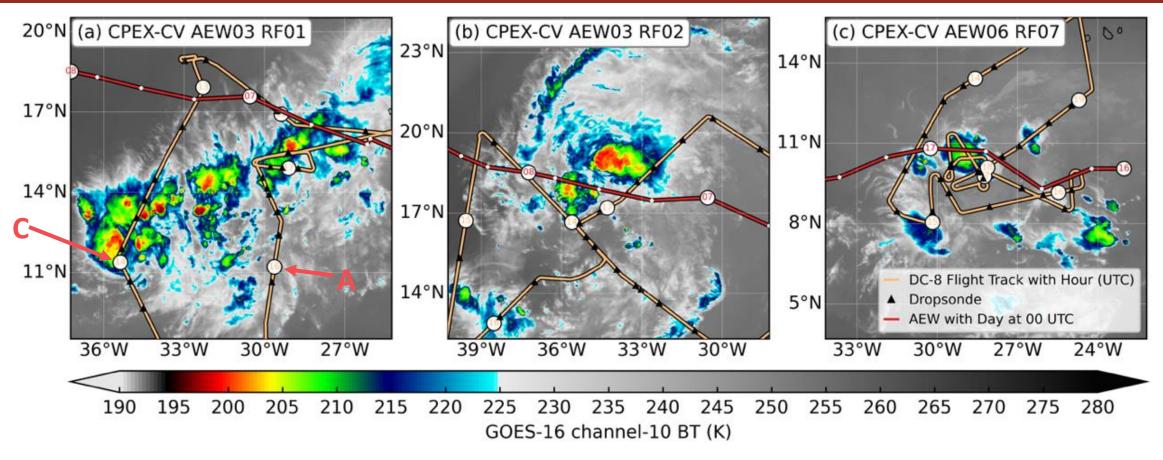
NCEP GSI-Based 3D Ensemble-Variational Hybrid Data Assimilation (3DEnVAR) for WRF and HWRF

$$J(x) = \frac{1}{2} \left(x - x^b \right)^T (\beta_1 B_1 + \beta_2 B_2)^{-1} \left(x - x^b \right) + \frac{1}{2} \left(y^0 - H(x) \right)^T R^{-1} \left(y^0 - H(x) \right)$$

 B_1 : Static, pre-generated matrix using NMC method

 B_2 : A flow-depend matrix derived from ensemble forecasts

Weighting factors: eta_1 and eta_2


When $\beta_2 = 0$ -- 3DVAR

Three CPEX-CV (2022) and Two CPEX-AW AEW (2021) Cases

Commission	AEW	Mission	Mission	Mission	Mission Target	
Campaign	Number	Number	Date	Time		
CPEX-AW	AEW02	RF01	20 August 2021	19:30 - 24:30	Scattered convections	
	AEW03	RF02	21 August 2021	21:00 - 26:30	Scattered convections	
CPEX-CV	AEW03	RF01	06 September 2022	10:59 - 18:25	Mature MCS	
		RF02	07 September 2022	11:50 - 18:59	Mature MCS	
	AEW06	RF07	16 September 2022	13:02 - 20:56	Scattered convections (upscale growth)	

^a the mission time over 24 UTC is on the next day of the mission date.

Flight Tracks, Tracks of AEWs, GOES-16 Ch10 BTs During CPEX-CV

Figure 1. The NASA DC-8 aircraft flight tracks (orange lines) with hours (UTC), the track of AEWs (red lines) with the days (UTC), the locations of the dropsondes (triangles), and the GOES-16 channel 10 brightness temperatures (color shaded) at 18 UTC of the mission day in three NASA DC-8 airborne missions during CPEX-CV.

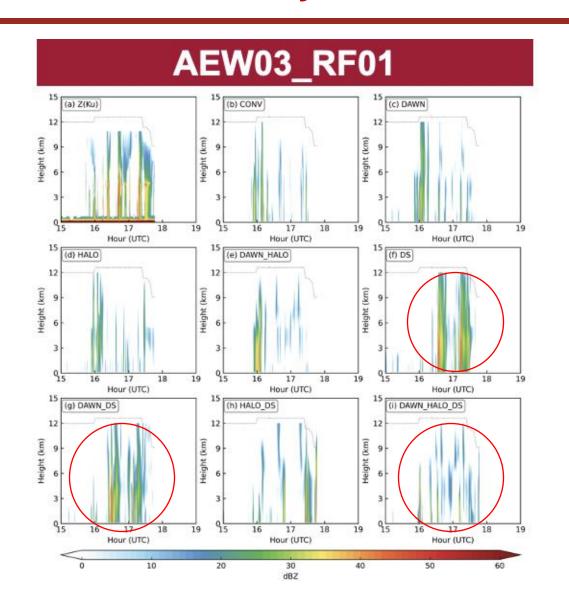
Experiment Design

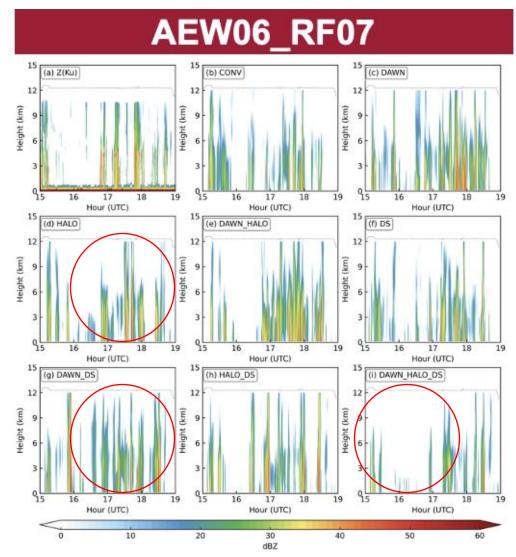
Conventional data (CONV)

	<u> </u>			
Experiment	PREPBUFR	DAWN	HALO	Dropsonde
CONV	√	×	×	×
DAWN	✓	√	×	×
HALO	✓	×	✓	×
DS	✓	×	×	✓
DAWN_HALO	\checkmark	✓	√	×
DAWN_DS	√	✓	×	✓
HALO_DS	✓	×	√	✓
DAWN_HALO_DS	✓	✓	✓	√

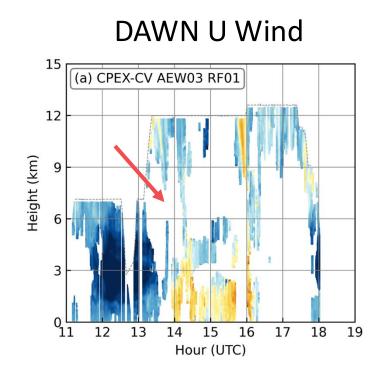
- WRF model
- GSI 3DEnVar data assimilation system

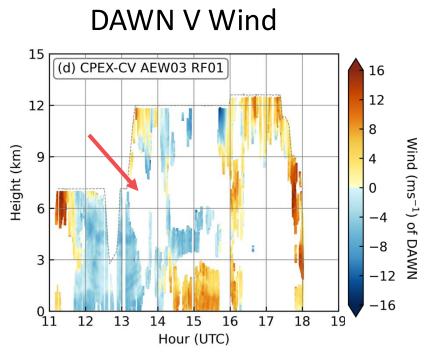
$$J(x) = \frac{1}{2}(x - x^b)^T (\beta_1 B_1 + \beta_2 B_2)^{-1} (x - x^b)$$
$$+ \frac{1}{2} (y^0 - Hx)^T R^{-1} (y^0 - Hx)$$

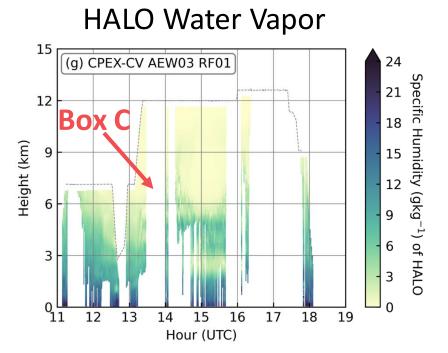

B₁: Static background error covariance B₂: Ensemble background error covariance

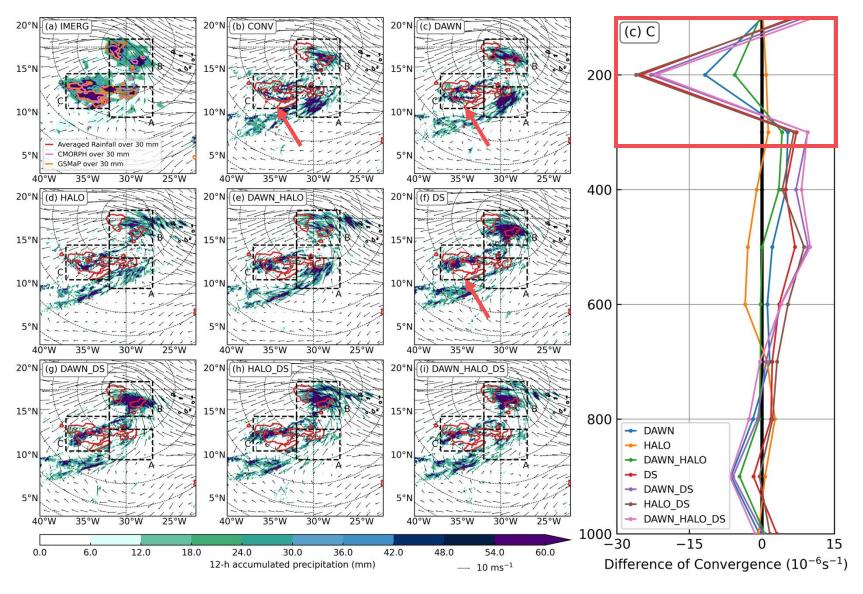

Weighting factors: β_1 and β_2

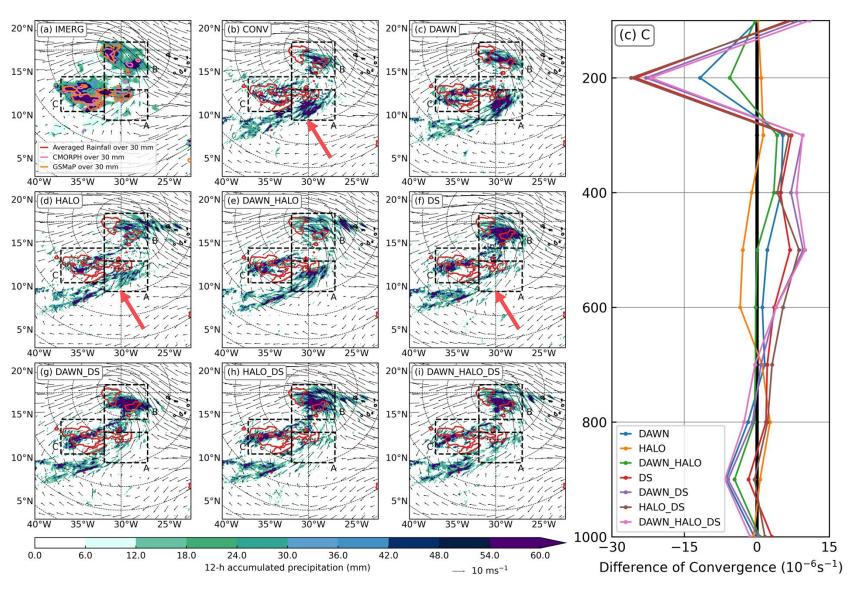
The WRF ARW model and the NCEP GSI-based 3DEnVAR hybrid DA system are used.


 $a\sqrt{}$ indicate the observations are assimilated; \times indicate the observations are not assimilated.

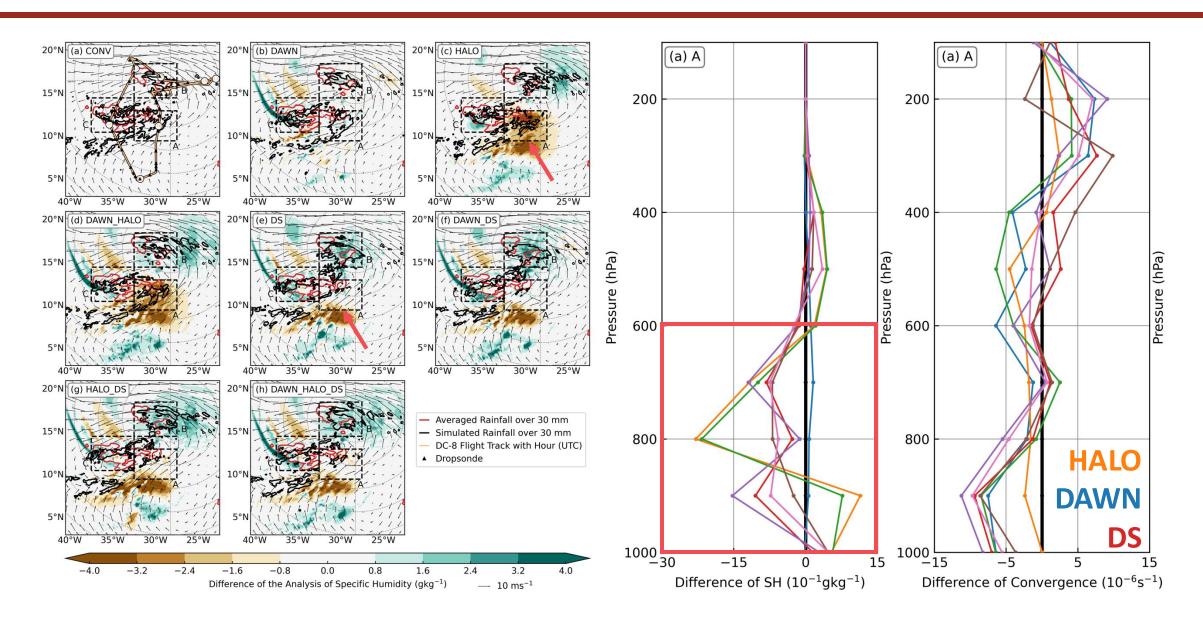

Radar Reflectivity from APR-3 Ku Band vs. WRF Simulations



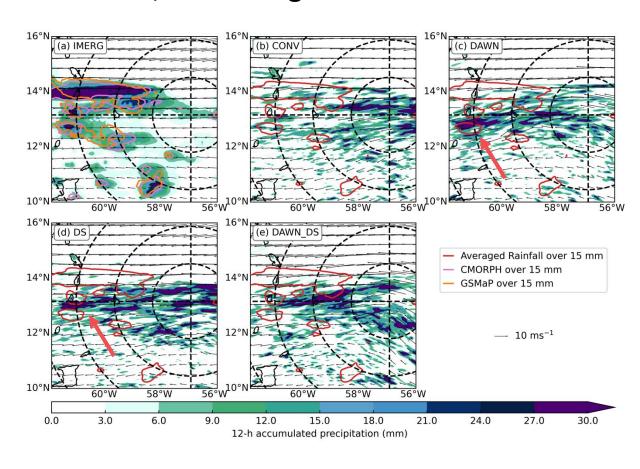

DAWN Winds, HALO Water Vapor of AEW03 in CPEX-CV RF01

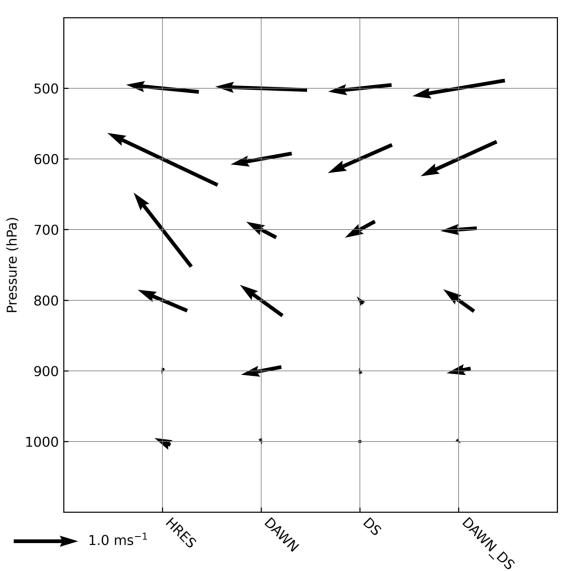


DAWN Winds: Increase Upper-Level Divergence in Box C


- CPEXCV AEW03 RF01
- CONV: Box C
 Scattered convections
- DAWN, DS: Box C
 More organized
 Stronger divergence

DAWN, HALO: Suppress Spurious Convections in Box A


- CPEXCV AEW03 RF01
- CONV: Box C
 Scattered convections
- DAWN, DS: Box C
 More organized
 Stronger divergence
- CONV: Box A Spurious rainfall
- HALO, DS: Box A
 Weaker precipitations

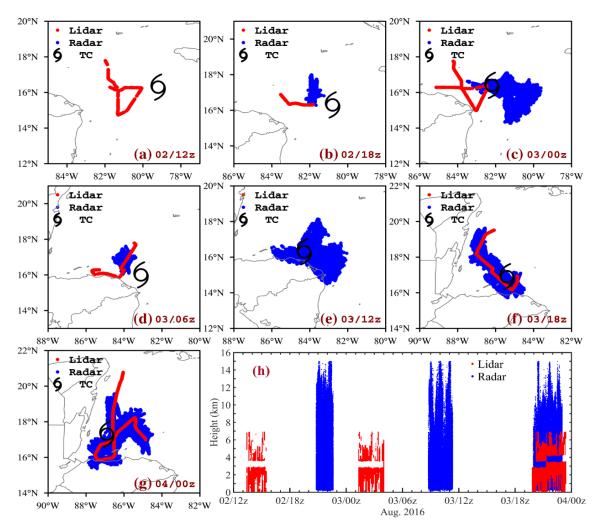

DAWN, HALO: Suppress Spurious Convections in Box A

DAWN Winds: Strengthen the AEJ

- CPEX-AW AEW03 RF02
- CONV: Near the center of the AEW03
- DAWN, DS: Stronger AEJ as ECMWF HRES

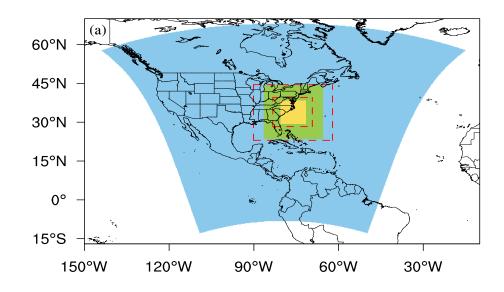
Feng et al. 2025

Combined Assimilation of Doppler Wind Lidar (DWL) Wind Profiles and Tail Doppler Radar (TDR) Radial Velocity over a Hurricane Inner Core



TDR: Extends ~14km

DWL: ~7km Vertical
extension
25m vertical
resolution of
wind profiles


Hurricane Earl (2016)

NCEP HWRF model and GSI-based hybrid 3DEnVAR system

- HWRF Version 4.0
- 13.5km/4.5km/1.5km resolution
- GSI hybrid 3dEnVar data assimilation system

$$J(x_1',\alpha) = \beta_1(x_1')^T B_1^{-1}(x_1') + \beta_2(\alpha)^T A^{-1}(\alpha) + (y^{0'} - Hx')^T R^{-1}(y^{0'} - Hx') + J_c$$

Vortex Relocation

+

Intensity Correction

+

Data Assimilation

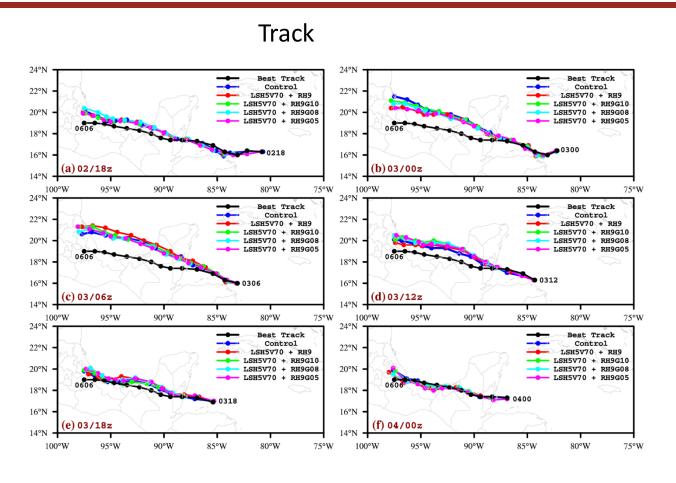
6 hourly cycled data assimilation

Data Assimilation Experiments

	DWL				TDR				
Experiments	u	v	Wind Speed	Horizontal Thinning Distance	Vertical Thinning Distance	ADP	Radial Wind	Horizontal Thinning	Gross Err
Control						Х			
LUV	X	X				X			
LUVH2V10	X	X		2 km	10 hPa	X			
LUVH5V70	X	X		5 km	70 hPa	X			
LSH5V10			X	5 km	10 hPa	X			
LSH5V50			X	5 km	50 hPa	Χ			
LSH5V60			X	5 km	60 hPa	X			
LSH5V70			X	5 km	70 hPa	X			
LSH5V80			X	5 km	80 hPa	X			
LSH5V100			X	5 km	100 hPa	X			
LSH2V70			X	2 km	70 hPa	X			
LSH10V70			X	10 km	70 hPa	X			
RH5						X	X	5 km	2.0
RH9						Χ	X	9 km	2.0
RH20						Χ	X	20 km	2.0
RH50						Χ	X	50 km	2.0
LSH5V70 + RH9			X	5 km	70 hPa	Χ	X	9 km	2.0
SH5V70 + RH9G10			X	5 km	70 hPa	Χ	X	9 km	1.0
SH5V70 + RH9G08			X	5 km	70 hPa	Χ	X	9 km	8.0
SH5V70 + RH9G05			X	5 km	70 hPa	X	Х	9 km	0.5

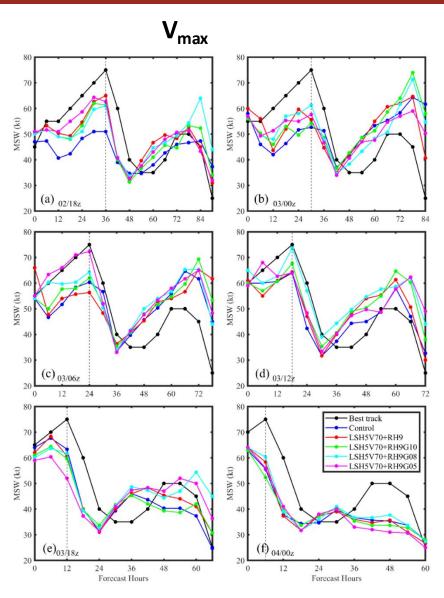
CTRL = HWRF operational set-up (2020)

DWL Assimilation

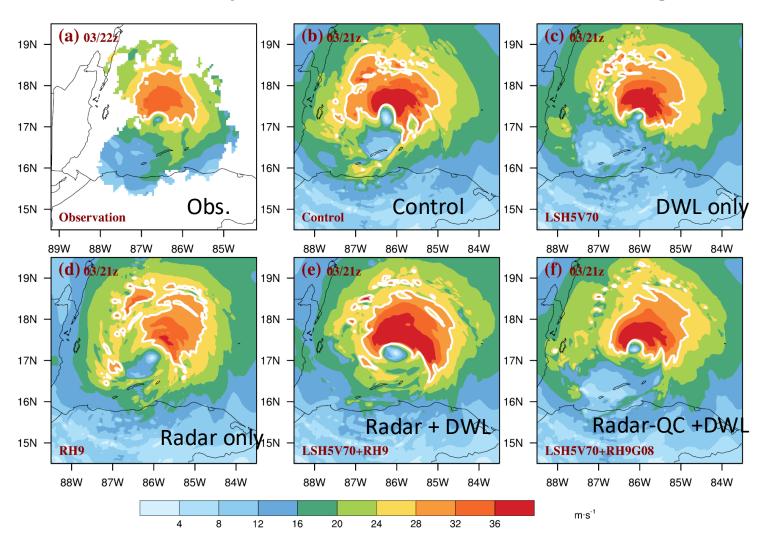

- Wind speeds vs. components (u, v)
- Data thinning

Integrated DA with DWL and TDR

- Integrated DA vs. individual DA
- Adjustments in TDR data quality control


Li and Pu 2022

Combined Assimilation: DWL Wind Speeds and TDR Radial Velocity


Influence of TDR + DWL

Best track - Black color; Control. - Blue

Combined Assimilation (Radar +DWL): Influence on Vortex Inner-Core

850 hPa Wind Analysis over the Inner Core at 21 UTC 3 August 2016

Summary and Concluding Remarks

- Wind profiles from the Aeolus satellite and airborne Doppler wind lidar (DWL)
 provide valuable data sources for three-dimensional wind measurements. The
 assimilation of these wind profiles can have significant positive impacts on
 numerical simulations of tropical cyclones and tropical convection.
- Three-dimensional wind profiles obtained from space-borne and airborne measurements contribute significantly to the observing system.
- Additionally, attention should be given to developing optimal strategies for integrated data assimilation when combining different types of observations into data assimilation systems.

References

- Feng, C., **Z. Pu**, A. Nehrir, K. Bedka, J. Doyle, 2024: The Impacts of Assimilating DAWN and HALO Observations on Numerical Simulations of Tropical Convective Systems Associated with African Easterly Waves During NASA's CPEX-AW and CPEX-CV. *The Journal of Atmospheric and Oceanic Technology*. (under review)
- Feng, C. and **Z. Pu**, 2023:The impacts of assimilating Aeolus horizontal line-of-sight winds on numerical predictions of Hurricane Ida (2021) and a mesoscale convective system over the Atlantic Ocean. *Atmospheric Measurement Techniques (AMT)*. **16**, 2691–2708.
- Li, X.; **Pu, Z**.; Zhang, J.A.; Emmitt, G.D., 2022: Combined Assimilation of Doppler Wind Lidar and Tail Doppler Radar Data over a Hurricane Inner Core for Improved Hurricane Prediction with the NCEP Regional HWRF System. *Remote Sens.* **14**, 2367. https://www.mdpi.com/2072-4292/14/10/2367
- Cui, Z., Z. Pu, G. D. Emmitt, S. Greco, 2020: The Impact of Airborne Doppler Aerosol WiNd lidar (DAWN) Wind Profiles on Numerical Simulations of Tropical Convective Systems during the NASA Convective Processes Experiment (CPEX). *Journal of Atmospheric and Oceanic Technology*, 37, 705-722. https://doi.org/10.1175/JTECH-D-19-0123.1
- **Pu, Z.**, L. Zhang, S. Zhang, B. Gentry, D. Emmitt, B. Demoz, R. Atlas, 2017: The impact of Doppler wind lidar measurements on high-impact weather forecasting: Regional OSSE and data assimilation studies. Book Chapter, "Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)", Ed. By S. K. Park and L. Xu, Springer, pp.259-283. DOI 10.1007/978-3-319-43415-5_12.
- **Pu, Z.**, L. Zhang, and G. D. Emmitt, 2010: Impact of airborne Doppler Wind Lidar data on numerical simulation of a tropical cyclone, *Geophy. Res. Lett.*, **37**, L05801, doi:10.1029/2009GL041765.