Backscatter and Velocity Measurements from Simulated River/Ocean Surfaces, Recent Results Using the NASA MSFC 2-Micron Pulsed Doppler Lidar the NASA MSFC 9-11 Micron CW Doppler Lidar

D. Bowdle (University of Alabama in Huntsville)

S.C. Johnson and J.A. Jarzembski* (NASA MSFC)

P.A. Kromis (Computer Science Corporation)

Vandana Srivastava (Universities Space Research Association)

Global Hydrology and Climate Center

National Space Science and Technology Center

**David.Bowdle@msfc.nasa.gov

MSFC WATER VELOCITY EXPERIMENTS

as of July 12, 2002

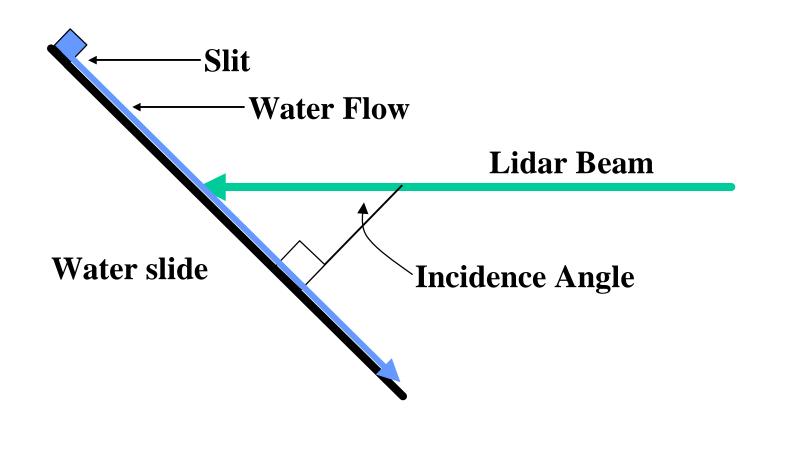
Date	Instrument	Wavelength	Target
6/10/96	MACAWS (MSFC, JPL, ETL)	10.6 μm	Pacific Ocean, near California
1996/97	$CW CO_2$	9.1 μm	MSFC lab centrifuge
10/13/98	MACAWS (MSFC, JPL, ETL)	10.6 μm	Atlantic Ocean, near Bahamas
12/17/99	Pulsed solid state	$2.02~\mu m$	Pickwick Lake, Tennessee River
2/24/00	Pulsed solid state	$2.02~\mu m$	Pickwick Lake, Tennessee River
4/26/00	$CW CO_2$	9.1 μm	Wilson Dam, Tennessee River
11/14/00	Pulsed solid state	$2.02~\mu m$	Pickwick Lake, Tennessee River
5/18/01	Pulsed solid state	$2.02 \mu m$	hose, prototype waterslide
5/29/01	Pulsed solid state	$2.02~\mu m$	PVC nozzles, prototype slide
9/21/01	Pulsed solid state	$2.02~\mu m$	MSFC field waterslide
3/18/02	Pulsed solid state	$2.02 \mu m$	MSFC field waterslide
6/5/02	Pulsed solid state	$2.02~\mu m$	MSFC field waterslide
7/10/02	Tunable CW CO ₂	10.2 μm	MSFC field waterslide

river tests inconclusive

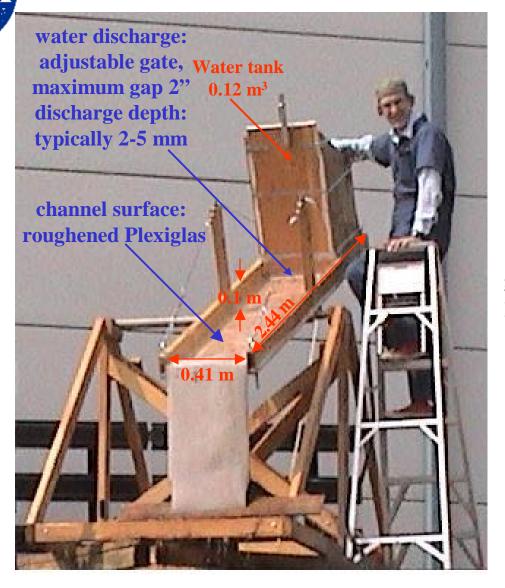
Water Velocity Signals

Water velocity signal strength depends on:

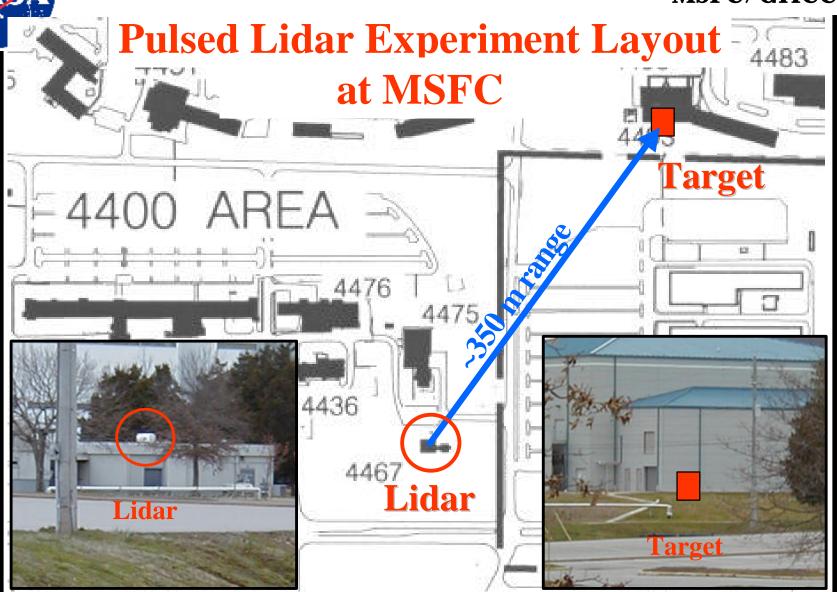
- Lidar beam wavelength
- Lidar beam footprint size
- Lidar beam incidence angle
- Lidar beam *azimuth angle*
- Lidar beam penetration depth
- Water surface roughness
- Water surface layer turbidity
- Water surface *contaminants* (e.g., foam, surfactants)


Water velocity signal interpretation depends on:

- Water surface currents, eddies, long and short waves
- Near-surface wind, spray, other aerosols



Water Slide Geometry



MSFC Water Slide generates water flows with 170° to 15° incidence angles 10° to 75° slopes

photo courtesy of G.D. Emmitt

Pulsed Lidar Experiment Parameters

- Lidar beam *output*: 2.017 mm, 50 mJ, 6.6 Hz
- Lidar beam *footprint*: ~10 cm
- Lidar beam *incidence angle*: typically 30°, 45°, 60°
- Lidar beam *penetration depth*: ~1 mm
- Range minimum: ~150 meters
- Range to target: ~350 meters
- Range gate, range plots: ~38.4 meters
- Range gate, velocity plots: ~210 m, centered on target
- Range gates in air near target: ~5 good gates
- Integration: varies, often 20 pulses
- Velocities toward lidar are negative (-)

June 5, 2002: Waterslide Slope 45°

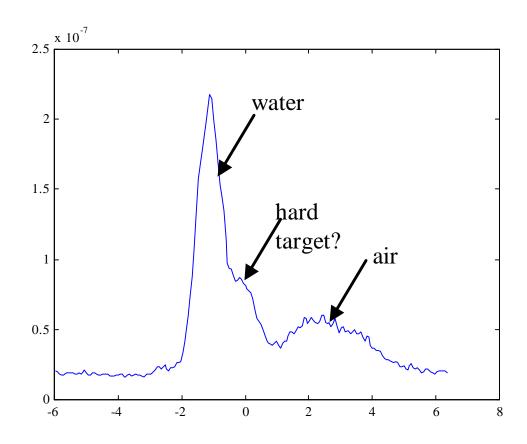


Figure 1 - Run 9, 254 Pulses Selected for Reference > 50 and Correct Reference Frequency

June 5, 2002: Waterslide Slope 45°

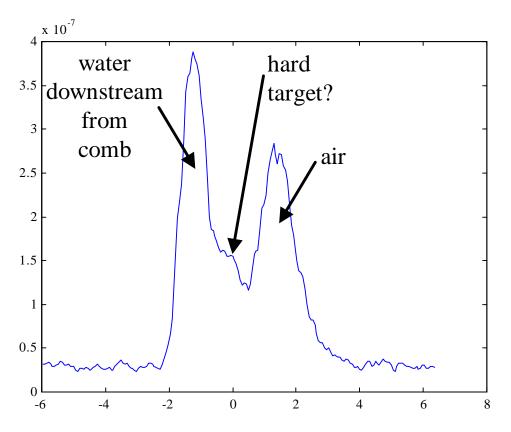


Figure 1 - Run 11, 127 Pulses Integrated, Selected for Reference > 50 and Correct Reference

June 5, 2002: Waterslide Slope 30°

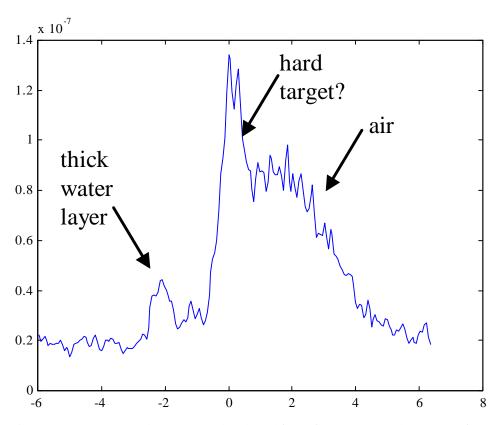


Figure 1 - Run 13, $\,$ 86 Pulses Integrated, Selected for Reference $\,>50$ and Correct Reference

Advantages of CW Focused Doppler Lidars compact, short range

- > facilitate detailed parametric study in laboratory
- **▶** facilitate deployment to pulsed lidar sites
- >minimize interference by ambient aerosols

turning mirror(s) near target

- >allow nearly horizontal flow channel
- >change beam interrogation angle without changing flow conditions

small beam footprint

- **>profile individual capillary waves**
- >compile wave facet retroreflection statistics
- >study speckle effects by enlarging beam footprint
- >separate water surface from spray and other aerosols

multiple wavelengths

- >2 mm CW lidar => cal/val for pulsed 2 mm lidar & signal processing
- >tunable 9-11 mm CW lidar discriminates water from other materials
- > water signals dominated by surface layer "skin" at each wavelength

Required Equipment Improvements

<u>lidars</u>

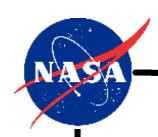
>2 mm pulsed – reduced chirp, beam detector, improved real-time display

>2 mm CW – acousto-optic modulator, telescope, real-time display

>9-11 mm CW – acousto-optic modulator

targets

>calibrated hard target


▶lightweight turning mirror

≻high efficiency beam dump

▶large format for pulsed lidar, lab-scale for CW lidars

waterslide

- **≻high-flow closed-cycle water supply system**
- >independent measurement of water surface velocity
- >control and measurement of water turbidity and surface condition
- >control and measurement of aerosol loading and air velocity
- **▶**improved water channel (increase width and depth, improve gate)
- >same water channel and accessories for laboratory and field experiments

Conclusions and Plans

Further progress requires

- improved control and measurement on water and air properties
- deeper/wider channel, higher flow rates, closed cycle supply
- improved backscatter calibration accessories

Plans – Phase I

- > implement minor upgrades to waterslide system and accessories
- > move pulsed and CW Doppler lidars to new labs in NSSTC Annex
- > conduct preliminary parametric experiments

Plans – Phase II

- > implement major upgrades to lidars, waterslide system, and accessories
- > conduct detailed parametric experiments, compare to theory & TODWL