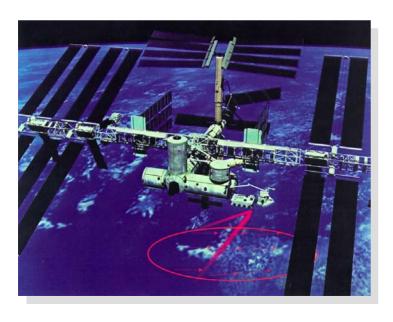
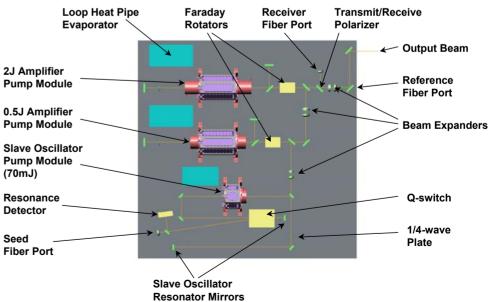


# Amplification of Q-switched Pulses to 400mJ at 2051nm using a Conduction-Cooled Laser Pump Module

Mark W. Phillips, J. Pete Tucker Coherent Technologies Inc Lafayette CO 80027

Email: Mark.Phillips@ctilidar.com


Presented at:


Meeting of the Working Group on Space-Based Lidar Winds

Frisco, June 29, 2004

# Initial Concept - Coherent Doppler Lidar for Wind Measurements from the International Space Station

- CTI recently completed contract with Communications Research Laboratory (Japan) to demonstrate CDWL laser amplifier prototype with path to deployment on the International Space Station (ISS)
  - Final performance requirements: 2J, 10Hz, 300-400ns (bandwidth-limited)
  - Contract was for initial risk reduction demonstration, showing ~0.5J energy at 10Hz PRF in first stage amplifier





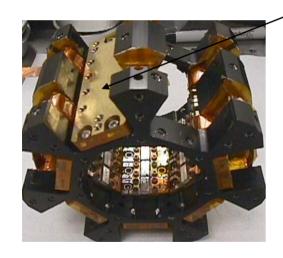
## JEM-CDL Performance Specifications

- Planned transceiver location on JEM Facility had access to ISS cooling
  - 2% wall-plug efficiency required (1kW power in at 2J, 10Hz operation)
  - Efficiency requirement best met by incorporating active cooling of rod to 200K
  - Design compatible with passive cooling using heat-pipes and space radiators on sun-synchronous platform with wind lidar as primary application
- Long-term transmitter objectives: Injection-seeded Q-switched operation with the following characteristics:

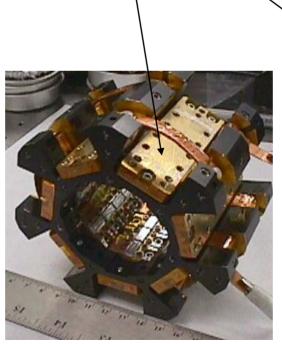
| Parameter:                  | Value:                                          |
|-----------------------------|-------------------------------------------------|
| Pulse energy                | ≥ 2J                                            |
| Pulse repetition rate (PRF) | 10Hz                                            |
| Pulse duration              | 300 +/-100ns                                    |
| Laser material              | Ho,Tm:YLF                                       |
| Laser wavelength            | 2051nm                                          |
| Mode                        | single longitudinal mode single transverse mode |
| Wall-plug efficiency        | 2%                                              |

### **Risk Reduction Demonstration**




- First stage amplifier assembled with closed loop refrigeration cooling
  - Hardware compatible with either passive heat-pipe or closed loop refrigeration cooling architecture
  - Rod and laser diodes conduction cooled to exchangeable cold-plates
- Goals of the funded activity
  - Demonstrate energy storage and extraction efficiency suitable for 0.5J, 10Hz amplifier operation with 2% wall-plug efficiency

## **Conduction-Cooled Laser Head Design**


#### **COHERENT TECHNOLOGIES**

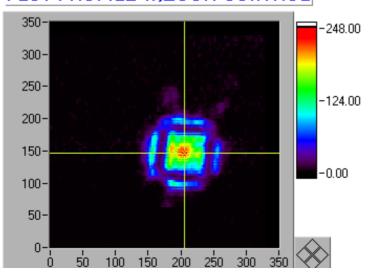
Laser head in assembly (prior to cold plate installation)

#### **Heat Transfer Surfaces**

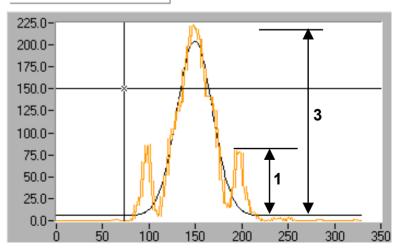


Laser Diode Assembly (4x2x7 bars) (56x100mJ = 5.6J max)




Laser Rod Assembly (7-fold symmetry heatsink)

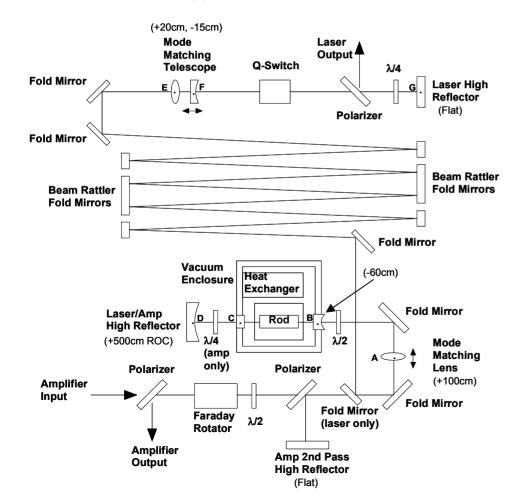
# Small-signal gain measurements and modeling indicate sufficient gain for 0.5J amplifier demonstration

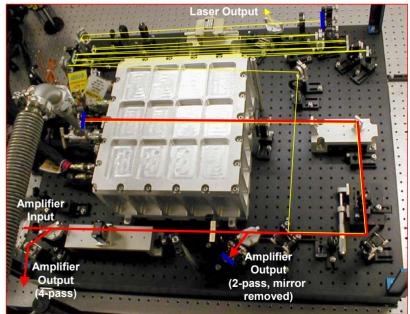

### **COHERENT TECHNOLOGIES**

- Small signal gain larger than initially planned due to reduced rod operating temperature
  - Initial 4-pass amplifier design based on single pass gain of 2 and 2mm mode radius in laser rod
  - Measured value of 3 at reduced diode operating current (75A out of 115A)
  - 400-500mJ possible with just 2-pass amplification
    - Simpler design and lower combined fluence at rod endfaces, allowing mode radius reduction to 1.25mm in laser rod (improved mode quality)

#### PLOT PROFILE WIZOOM CONTROL

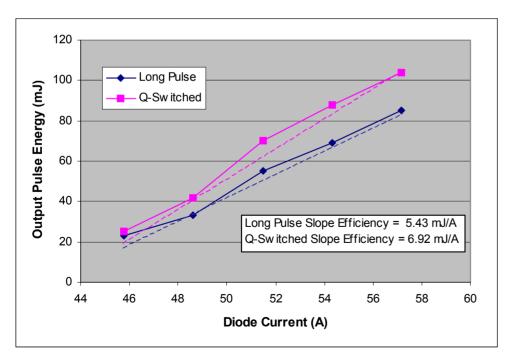


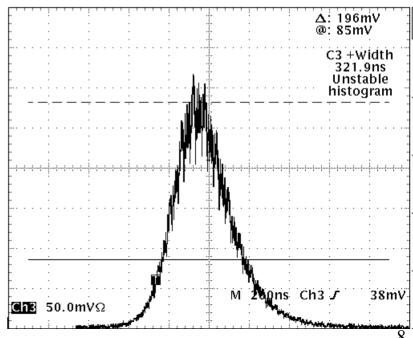

#### VERTICAL SLICE




### Layout of Amplifier and Q-Switched Laser Resonator

### **COHERENT TECHNOLOGIES**


 Hardware assembled both for operation as a long resonator Q-switched laser (for initial energy characterization) and as a multiple pass (2 and 4 pass) amplifier

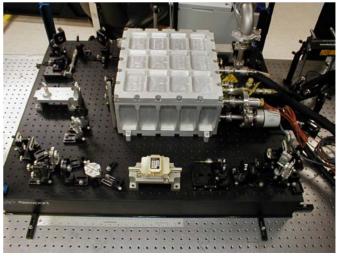





## Q-Switched Operation (Long Resonator Laser)

- Laser output coupling adjusted to limit maximum fluence to <20J/cm<sup>2</sup>
- 105mJ, 10Hz, 320ns output obtained at 36% output coupling and 57A diode current
  - Increased energy possible by increasing output coupling and diode current
  - Laser diodes rated for 100W output power at 115A operating current (1% duty cycle)
  - Extrapolating Q-switched data: 400mJ emitted for 100A diode current (at same fluence level)






## Packaged Hardware at CTI prior to shipping to CRL

- Laser Amplifier Head has 4 ports:
  - Q-switch Laser Output
  - Amplifier Input
  - Amplifier Output (2-pass)
  - Amplifier Output (4-pass)



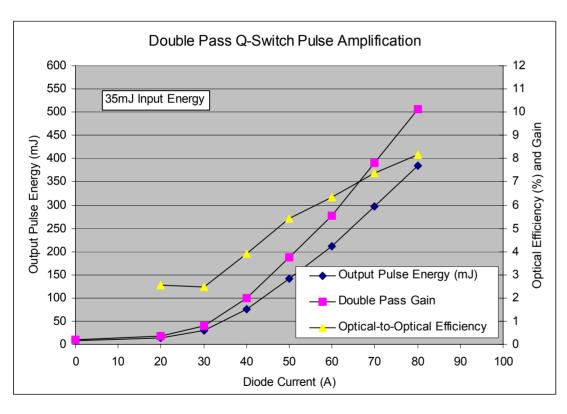




### Prototype Laser Amplifier Delivered to CRL

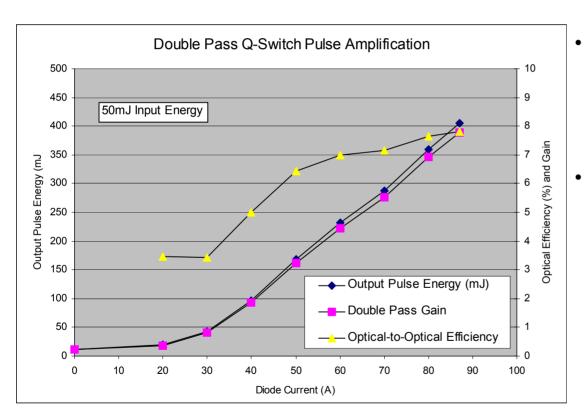
### **COHERENT TECHNOLOGIES**

- CTI breadboard hardware includes both amplifier and long resonator optical assemblies
  - Amplifier configuration takes up a small fraction of breadboard dimensions
- CRL/NEC MOPA operated at 1Hz PRF during tests due to optical damage concerns
  - CTI amplifier hardware operated at 10Hz PRF, triggering CRL/NEC MOPA at 1Hz


CRL/NEC Pre-Amp Assembly (50-70mJ, 1-5Hz)

CRL/NEC Laser Assembly (15-25mJ, 1-5Hz)

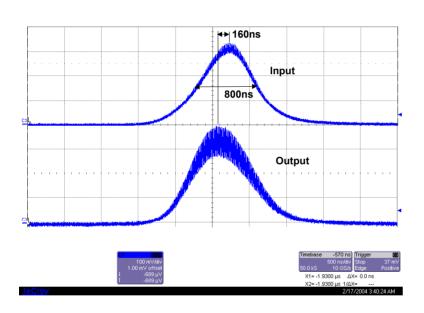



CTI Amplifier Assembly (400-500mJ, 10Hz)

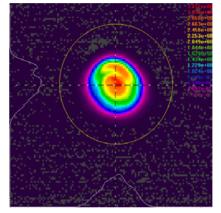
## 2-Pass Amplifier Performance (35mJ input pulse energy)

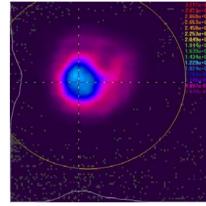


- Laser Amplifier operated at 10Hz but input pulses only available and amplified at 1Hz (additional thermal load in amplifier)
- Pulse duration between 600 and 800ns (depending on laser and pre-amplifier settings)
- >10x 2-pass gain


## 2-Pass Amplifier Performance (50mJ input pulse energy)




- >400mJ output pulse energy obtained with on-axis double pass amplifier configuration and 50mJ input pulse energy
  - ~8x double-pass gain
- Maximum output pulse energy limited to ~420mJ by optical damage to output Faraday rotator
  - Mitigated by adjusting beam magnification on second pass of amplifier (curvature of amplifier end reflector) or by going to slightly off-axis 2-pass configuration


### **Amplifier Characteristics at 400mJ Pulse Energy** (temporal and spatial)

COHERENT TECHNOLOGIES



**Output Q-switch pulse profile** "advanced" in time by 160ns compared with input profile due to partial amplifier saturation behavior





- Double-pass spatial beam profile (right) obtained during initial acceptance testing was not diffraction-limited - noise associated with input spatial noise feature from pre-amplifier beam (left)
- CRL plans to improve output mode profile for diffraction-limited operation by cleanup of input beam profile and optimization of mode-matching to 13 laser amplifier rod core

### **Summary**

- CTI has demonstrated Q-switched pulse amplification in Tm,Ho:YLF to >400mJ output pulse energy
- On-axis 2-pass amplifier provides 10x gain for 35mJ input energy and 8x gain for 50mJ input energy
- Optical-to-optical efficiency at 400mJ output energy is ~8%
- Pulse duration used during initial testing was 700-800ns
  - Maximum fluence setting of 20J/cm<sup>2</sup> designed for shorter pulse operation around 300ns
- Temporal pulse distortion indicates modest level of gain saturation but with gain still available at back end of pulse
  - Higher energy extraction possible with higher input pulse energy
- First demonstration of multiple hundred millijoule output (and >10x doublepass amplification) in an all conduction-cooled two micron laser pump module
- Embedded cold-plate design directly compatible with heatpipe and space radiator technology for efficient thermal management in a space environment
- All amplifier results obtained in a 10 day visit to CRL this February, including a 4 day installation and mode-matching period
  - Results from acceptance test are preliminary and far from optimized, both in terms of pulse energy extraction and output beam profile