

NASA Earth Science Update

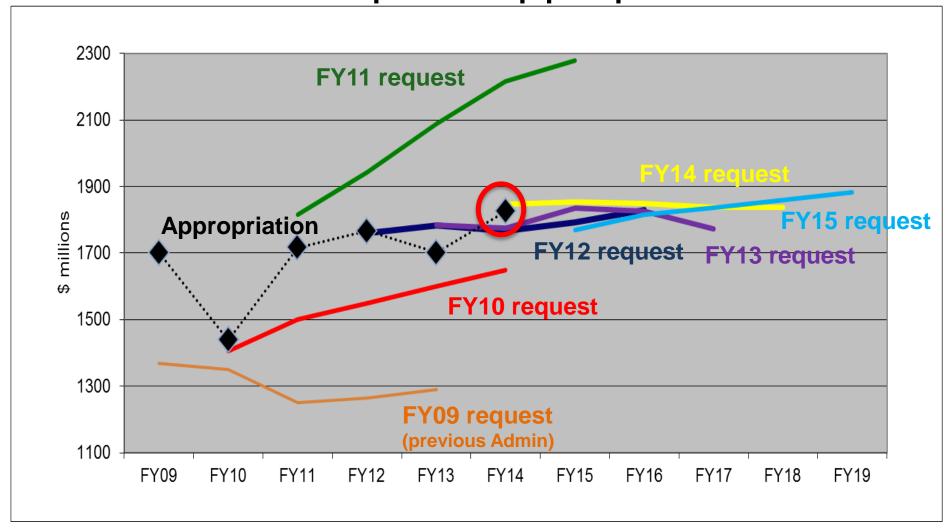
May 13, 2014

Presented to: **Doppler Wind Lidar Working Group**

George J. Komar

Associate Director/Program Manager

Earth Science Technology Office


Earth Science Program Overall Strategy

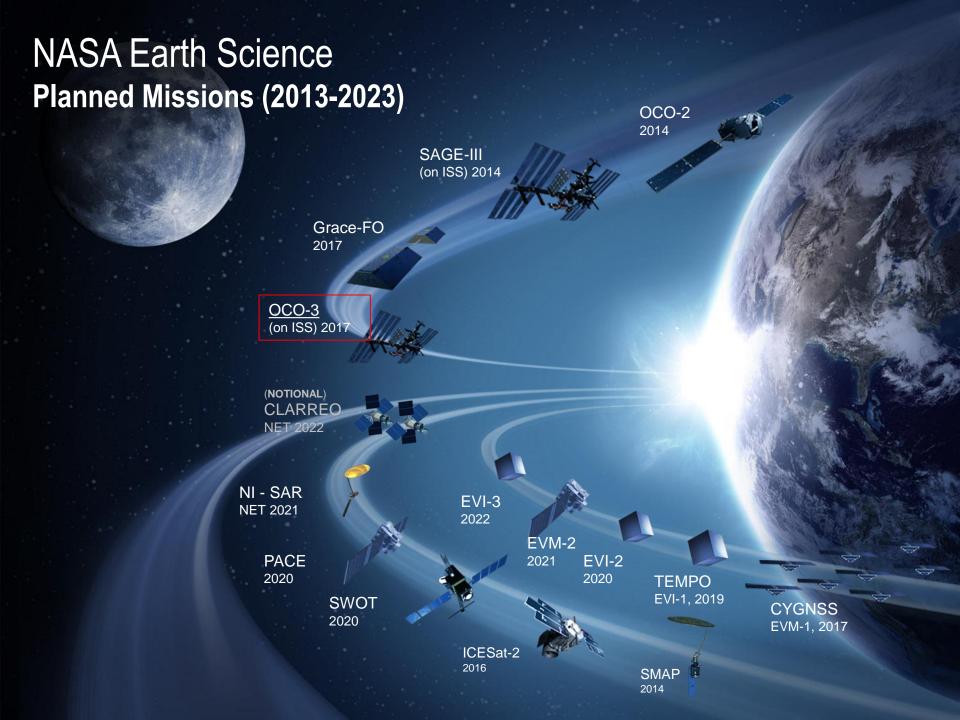
Maintain a **balanced program** that:

- advances Earth System Science
- delivers societal benefit through applications development and capacity building
- provides essential global spaceborne measurements
- develops and demonstrates technologies for nextgeneration measurements, and
- complements and is coordinated with activities of other agencies and international partners

Earth Science Budget: FY15 Request/Appropriation

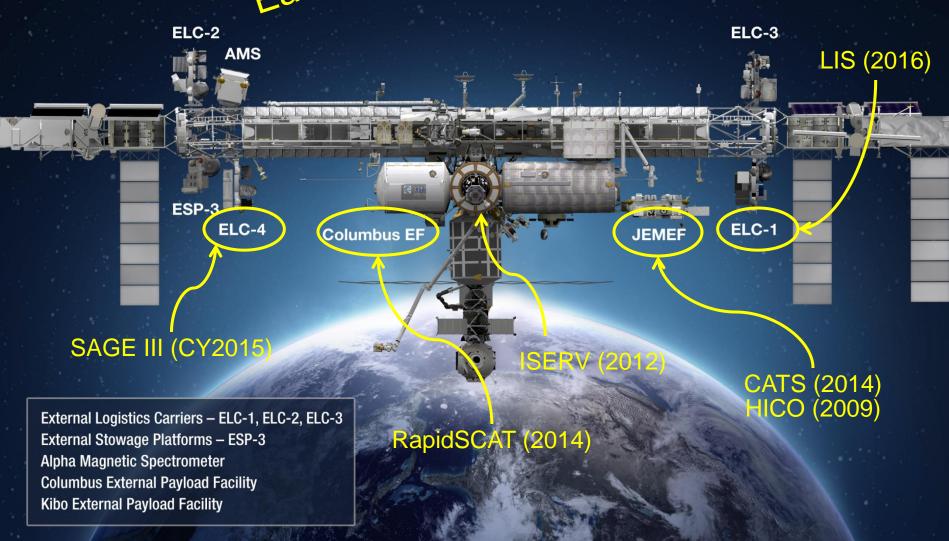
FY 2015 Budget Request

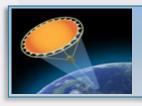
Notional


	FY 2013 Op Plan*	FY 2014 Enacted**	FY2015	FY2016	FY2017	FY2018	FY2019
Science	4,781.6	5,151.2	4,972.0	5,021.7	5,071.9	5,122.6	5,173.9
Earth Science	1,659.2	1,826.0	1,770.3	1,815.5	1,837.6	1,861.9	1,886.3
Planetary Science	1,274.6	1,345.0	1,280.3	1,304.9	1,337.1	1,355.7	1,374.1
Astrophysics	617.0	668.0	607.3	633.7	651.2	696.8	993.0
James Webb Space Telescope	627.6	658.2	645.4	620.0	569.4	534.9	305.0
Heliophysics	603.2	654.0	668.9	647.6	676.6	673.3	675.5
Aeronautics	529.5	566.0	551.1	556.6	562.2	567.8	573.5
Space Technology	614.5	576.0	705.5	712.6	719.7	726.9	734.2
Exploration	3,705.5	4,113.2	3,976.0	4,079.9	4,061.2	4,119.5	3,673.4
Exploration Systems Development	2,883.8	3,115.2	2,784.4	2,863.3	2,917.7	2,993.9	3,106.6
Commercial Spaceflight	525.0	696.0	848.3	872.3	791.7	730.9	172.0
Exploration Research and Development	296.7	302.0	343.4	344.3	351.8	394.7	394.7
Space Operations	3,724.9	3,778.0	3,905.4	3,951.9	4,051.0	4,073.8	4,601.8
Space Shuttle	38.8		0.0	0.0	0.0	0.0	0.0
International Space Station	2,775.9		3,050.8	3,126.5	3,266.9	3,290.3	3,818.6
Space and Flight Support (SFS)	910.2		854.6	825.4	784.1	783.5	783.2
Education	116.3	116.6	88.9	89.8	90.7	91.6	92.6
Cross Agency Support	2,711.0	2,793.0	2,778.6	2,806.4	2,834.4	2,862.8	2,891.4
Center Management and Operations	1,991.6		2,038.8	2,059.2	2,079.7	2,100.5	2,121.6
Agency Management and Operations	719.4		739.8	747.2	754.7	762.3	769.8
Construction & Envrmtl Compl Restoration	646.6	515.0	446.1	379.0	382.7	386.6	390.4
Construction of Facilities	589.5		370.6	302.7	305.7	308.7	311.8
Environmental Compliance and Restoration	57.0		75.5	76.3	77.0	77.8	78.6
Inspector General	35.3	37.5	37.0	37.4	37.7	38.1	38.5
Grand Total	16,865.2	17,646.5	17,460.6	17,635.3	17,811.5	17,989.7	18,169.7

^{*}As reflected in the August 2013 Operating Plan, FY 2013 includes rescissions per P.L.113-6 Division G, Section 3001(b)(1)(B) and Division G, Section 3004(c)(1) and reductions due to sequestration per BBEDCA Section 215A.

^{**}FY 2014 reflects funding amounts specified in P.L. 113-76, Consolidated Appropriations Act, 2014, including amounts noted in the Explanatory Statement. Where amounts were not specified, no amount is shown in the budget table.


Note: Funds associated with out-year estimates for programmatic construction remain in programmatic accounts.



International Space Station

Earth Science Instruments

The Earth Science Technology Office is a targeted, science-driven, competed, and actively managed technology program. The investment elements include:

Instrument Incubator Program (IIP)

robust new instruments and measurement techniques
17 new projects added in FY14 (total funding approximately \$71M over 3 years)

Advanced Component Technologies (ACT)

development of critical components and subsystems for instruments and platforms 15 new projects added in FY11 (total funding approximately \$16M over 3 years)

Advanced Information Systems Technology (AIST)

innovative on-orbit and ground capabilities for communication, processing, and management of remotely sensed data and the efficient generation of data products 18 new projects added in FY12 (total funding approximately \$23M over 3-4 years)

In-Space Validation of Earth Science Technologies (InVEST)

on-orbit technology validation and risk reduction for small instruments and instrument systems that could not otherwise be fully tested on the ground or airborne systems First 4 projects added in FY13 (total funding ~\$13M over 3 years)

The current portfolio of active investments supports all of the 2007 NRC Decadal Survey mission concepts. 65% directly support Tier 1 and 2 missions, ~ 15% support Tier 3 missions, and the remainder are crosscutting.

Technology Program Budget/Schedule

(\$M)	FY14	FY15	FY16	FY17	FY18	FY19
ROSES Solicitations	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
ATI/ACT Solicitation NRA Release	ACT-14	InVEST-15		ACT-17	InVEST18?	
Budget						
IIP Solicitation NRA Release			IIP-16			IIP-19
Budget			_			
AIST Solicitation NRA Release	AIST-14		AIST-16		AIST-18	
Budget						
In-Guide Totals (\$M)	55.1	56.2	55.1	56.1	56.1	56.1

Instrument Incubator Program (IIP) 2013 Solicitation **Awards**

Microwave

Wide-swath Shared Aperture Cloud Radar (WiSCR) - Lihua Li, GSFC

Three Band Cloud and Precipitation Radar (3CPR) - Gregory Sadowy, JPL

ш

Enhancement, Demonstration, and Validation of the Wideband Instrument for Snow Measurement (WISM) - Tim Durham, Harris Corporation

Optical

HSRL for Aerosols, Winds, and Clouds using Optical Autocovariance Wind Lidar (HAWC-OAWL)

-Sara Tucker, Ball Aerospace

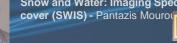
2-Micron Direct Detection Airborne Lidar For Simultaneous and Independent CO2 and H2O Colum Measurement

- Upendra Singh, LaRC

Other

Cold Atom Gravity Gradiometer for Geodesy- Babak Saif, GSFC

Total value approximately \$71 million



Microwave

UWBRAD: Ultra Wideband Software Defined Microwave Radiometer for Ice Sheet Subsurface Temperature Sensing - Joel Johnson, Ohio State University

Snow and Water: Imaging Spectroscopy for coasts and snow

A Compact Adaptable Microwave Limb Sounder for Atmospheric Composition - Nathaniel Livesey, JPL

Wide-band Millimeter and Sub-Millimeter Wave Radiometer

to Measure Tropospheric Water and Cloud ICE (TWICE)

- Steven Reising, Colorado State University

Signals of Opportunity Airborne Demonstrator (SoOp-AD)

- James Garrison, Purdue University

TIRCIS: A Thermal Infrared, Compact Imaging **Spectrometer for Small Satellite Applications**

- Robert Wright, University of Hawaii

Current ESTO Investments in Active Optical Technology (19)

Title	PI	Org	Program
ASCENDS Lidar: Acceleration & demo of key space lidar technologies	Abshire	GSFC	IIP-10
ASCENDS CarbonHawk Experiment Simulator (ACES)	Obland	LaRC	IIP-10
High Power Mid-IR Laser Development to 3.5 microns	Anderson	Harvard	ACT-10
Combined HSRL & Optical Autocovariance Wind Lidar (HOAWL) Demo	Delker	Ball Aerospace	ACT-10
Advancement of the O2 subsystem to Demo Retrieval of XCO2 using Simultaneous Laser			
Absorption Spectrometer Integrated Column Measurements of CO2 and O2	Dobler	ITT	ACT-10
A compact remote sensing Lidar for High Resolution Measurements of Methane	Riris	GSFC	ACT-10
Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the			
3-D WindsDecadal Survey Mission	Singh	LaRC	ACT-10
Ball Aerospace Fabry-Perot for the Integrated Direct Detection Lidar (FIDDL)	Tucker	Ball Aerospace	ACT-10
A 2-micron Pulsed Laser Transmitter for Direct Detection Column CO2 Measurement from Space	Yu	LaRC	ACT-10
Development and Integration of a Pulsed 2-micron Direct Detection Integrated Path Differential			
Absorption (IPDA) Lidar for CO2 Column Measurement from Airborne platfom	Singh	LaRC	ATI-QRS-12
Development of a prototype 2 micron fiber-coupled seed laser for integration in lidar transmitter	Forouhar	JPL	ATI-QRS-12
High Power UV Laser Lifetime Demonstrator	Hovis	Fibertek, Inc	ATI-QRS-13
Multi-wavelength Ocean Profiling and Atmospheric Lidar	Hostetler	LaRC	IIP-13
Triple-Pulsed 2-Micron Direct Detection Airborne Lidar for Simultaneous and Independent CO2			
and H2O Column Measurement Novel Lidar Technologies and Techniques with Path to Space	Singh	LaRC	IIP-13
HSRL for Aerosols, Winds, and Clouds using Optical Autocovariance Wind Lidar (HAWC-OAWL)	Tucker	Ball Aerospace	IIP-13
Initial Development Work for the Cloud-Aerosol Multi-Angle Lidar (CAMAL)	McGill	GSFC	ATI-QRS-14
Preparing the Doppler Aerosol Wind Lidar (DAWN) for Calibration/Validation Activities for the			
Aeolus Mission	Koch	LaRC	ATI-QRS-14
Phase IIE funding to flight harden a Methane DIAL Transmitter	Nehrir	LaRC	ATI-QRS-14
Widely Tunable Quantum Cascade Laser (QCL)			
Local Oscillator for IHEARS	Kostiuk	GSFC	ATI-QRS-14

MISTIC Winds: Midwave Infrared Sounding of Temperature and humidity in a Constellation for Winds

PI: Kevin R. Maschhoff, BAE Systems

<u>Objective</u>

Advance the readiness of a miniature, high resolution, wide field, thermal emission imaging spectrometer to measure vertically resolved tropospheric profiles of temperature and humidity for deriving global 3-D wind measurements.

- Provide ~ 2-3 km spatial resolution temperature and humidity soundings of the troposphere using an AIRS-like (Atmospheric Infra-red Sounding) method.
- Enable a LEO constellation approach that provides 3-D Wind field measurements and atmospheric state and transport observations at low system cost.
- Reduce technology risks with the Infrared Focal Plane Array (IRFPA) and spectrometer technologies critical for significant instrument size, weight and power reduction (15 x 25 x 25 cm, 15 kg, 50 W).

IR Sounding Constellation Winds Secondary Payload on a Small Adaptor IR Sounding Constellation Motion Vector Vector Winds Formation

<u>Approach</u>

- Optimize and refine space-based measurement approach based on experience with AIRS, AIRS-Light and small satellite provider experiences.
- Demonstrate calibration stability of miniature MWIR spectrometer (4.082 - 5.128 um) in the lab.
- Demonstrate robustness of spectrometer by performing space level thermal fluctuation testing and vibration testing to launch levels.
- Verify instrument measurement capability of 3-D clouddrift and water vapor motion vector winds on high altitude Proteus platform.
- Demonstrate IRFPA space radiation tolerance (> 25 krad).

Co-Is/Partners: J. Susskind, NASA GSFC; H. Aumann, JPL

Key Milestones

key milestones	
 Instrument science and payload requirements review 	08/14
 Instrument science and payload concept review 	03/15
Detector radiation test complete	04/15
Airborne demonstration plan review	07/15
Airborne instrument design complete	01/16
ROIC radiation test complete	03/16
Calibration stability test complete	09/16
Airborne demonstration complete	11/16
Airborne demonstration data analysis complete	03/17

