EUCAARI

WP 2.4: Regional aerosol source apportionment and long range transport

Task 2.4.1: Source apportionment of organic aerosols using tracers

Description of work -University of Aveiro (Portugal) and University of Pannonia (Hungary)

To avoid problems related to detection limits for some important organic aerosol tracers at minor concentrations, it is recommendable to have, at least, $\approx 850 \ \mu g$ of OC in each filter part. If this mass is not present in the filters, the alternative is to extract together various samples to obtain average concentrations.

Filters for organic analysis should be sent to the University of Aveiro, where they are solvent extracted and the total organic extract is divided into 5 different classes of increasing polarity by flash chromatography in silica gel. The five major organic classes are: aliphatics, PAH, carbonyls, hydroxyl compounds and sugars+acids. The two more polar organic extracts (hydroxyl compounds and sugars+acids) are sent to Veszprem for posterior derivatization and GC-MS analysis.

▶ List of organic tracers

Compounds	Major source	Emission process	
n-Alkanes, C ₁₅ -C ₂₀ (odd/even)	Microbial	Direct/resuspension	
C ₂₀ -C ₃₇ (odd/even)	Plant waxes	Direct/biomass burning	
C ₁₅ -C ₃₇ (CPI=1)	Vehicles	Exhaust	
n-Alkanoic acids, C ₉			
C ₁₅ -C ₃₇	Microbial/biomass	Direct/resuspension/combustion	
C ₂₀ -C ₃₆	Higher plants	Direct/combustion	
<i>n</i> -Alkanols, C ₁₄ -C ₃₆	Biomass	Direct	
n-Alkanedioic acids, C ₆ -C ₂₈	Various	Photo-oxidation/combustion	
Wax esters	Plant waxes	Biomass combustion/direct	
Methoxyphenols	Biomass with lignins	Combustion	
Levoglucosan	Biomass with cellulose	Combustion	

Galactosan	Biomass with cellulose	Combustion
Mannosan	Biomass with cellulose	Combustion
Cholesterol	Meat/algae	Cooking/direct
Phytosterols	Higher plants	Combustion/direct
Triterpenoids	Higher plants	Combustion/direct
Diterpenoids (resin acids)	Higher plants	Combustion/direct
	(gymnosperms)	
Hopanes/steranes	Petroleum	Vehicle exhaust and others
UCM	Petroleum	Vehicle exhaust and others
РАН	Ubiquitous	Pyrogenic processes

Chemical group	Molecular markers	Molecular structures	Source
Monosaccharide derivatives	Levoglucosan	Он О	Biomass with cellulose
	Galactosan		Biomass with cellulose
	Mannosan	OH Levoglucosan	Biomass with cellulose
Methoxyphenols	Vanillin	OCH ₃	Conifers
	Vanillic acid	C—OH OCH ₃	Conifers
	Syringaldehyde	н,со осн,	Angiosperm
	Syringic acid	ньог ф оснь	Angiosperm
	p-Hydroxybenzoic acid	OH OH	Gramineae

Diterpenoids	Abietic acid	CH ₂ CH ₃ H ₂ CH ₃	Conifers
	Pimaric acid	· · · · · · · · · · · · · · · · · · ·	Conifers
	Iso-pimaric acid	· · · · · · · · · · · · · · · · · · ·	Conifers
	Sandaracopimaric acid	· in the coordinate of the coo	Conifers

	Dehydroabietic acid		Conifers
		· · · · · · · · · · · · · · · · · · ·	
	Retene		Conifers
Triterpenoids	α-Amyrin	H _G C CH _B H _G C CH _B H _G C CH _B H _G C CH _B H _G C CH _B	Angiosperm
	β-Amyrin	He CH.	Angiosperm
	Lupeol	H ₁ C=C, CH ₁ H ₂ CH ₂ CH ₃ H ₄ CH ₄ CH ₄ H ₄ CH ₄ CH ₄	Angiosperm
Phytosterols	β-Sitosterol		All biomass sources

	Stigmasterol		All biomass sources
	Campesterol	Inn.	Gramineae
Sterols	Cholesterol	HO	Meat cooking; algae
		$β$ -Sitosterol R $β$ $Cholesterol, R = H (C_{27})$ $Campesterol, R = CH_3 (C_{28})$ $β$ -Sitosterol, $R = C_2H_5 (C_{29})$	
Aliphatic compounds	Pristane		Fossil fuel Combustion
	Phytane		Fossil fuel Combustion
	Hopanes	$R = H, CH_3 - C_4H_9$	Fossil fuel Combustion

	Steranes	R R=H, CH ₃ , C ₂ H ₅	
Ketone	6,10,14 - Trimethylpentadecan-2-one		Biogenic origin; Degradation product from phytol of chlorophyll
Unsaturated fatty acids	9-Octadecenoic acid (oleic acid)	CH ₃ (CH ₂) ₇ CH=CH-(CH ₂) ₇ COOH	Microbial sources; vegetation emissions; meat cooking operations; marine emissions
	9,12-Octadecadienoic acid (linoleic acid)	CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ COOH	
	Hexadecenoic acid (palmitoleic acid)	CH ₃ (CH ₂) ₅ CH=CH-(CH ₂) ₇ COOH	
	Hexadecanoic acid (palmitic acid)	CH ₃ (CH ₂) ₁₄ COOH	Meat cooking preparation; vegetation emissions
	Octadecanoic acid (stearic acid)	CH ₃ (CH ₂) ₁₆ COOH	

Besides those compounds listed in the table, some SOA products may be analysed by Aveiro and Veszprem, such as:

- nopinone and pinonaldehyde (Univ. Aveiro)
- tetrols, pinic and pinonic acids (Univ. Veszprem).

Taking into account that most of the SOA compounds are polar, probably most of them will be present in the extracts sent to Veszprem. If you are interested in some particular SOA products, you must contact G. Kiss and specify what compounds you want, in order to obtain the appropriate standards and calibrate the GC-MS.