ANYL Sem Abstracts
This page contains the abstracts for upcoming and past Analytical & Environmental Chemistry Seminars at CU. Please post newer seminars at the top, but do not erase the abstracts from old seminars.
MONDAY, September 14, 2009
4:00 p.m. CIRES Auditorium University of Colorado, Boulder
Renewable and Sustainable Energy Institute (RASEI): What does this mean for the Dept. of Chemistry and Biochemistry (and other departments and institutes)?
Carl A. Koval, Co-Director
Abstract
In June 2009, the University of Colorado’s Board of Regents approved the formation of a new campus institute: RASEI (pronounced ‘racy”). This formation of this institute grew out of the former CU-Boulder Energy Initiative (EI), which was created in early 2006. In addition, administrators at CU-Boulder and the National Renewable Energy Laboratory (NREL) in Golden signed a MOU to operate RASEI as a joint institute. In this presentation, I will focus on:
• the transition of the EI to RASEI, from initiative to institute;
• opportunities for faculty to be involved in RASEI governance and programs;
• opportunities for students to be involved RASEI’s research, teaching, commercialization and outreach activities.
For more information about RASEI, go to http://rasei.colorado.edu.
Research at the Interface of Nanoscale Materials and Biology
Daniel L. Feldheim
Abstract
Between the size scale of individual biomacromolecules and cellular organelles lies a size regime―the few nm to 100 nm range―that is not readily probed using existing technologies. Thus, while a vast inventory of RNA and protein sequences and structures are being catalogued, a quantitative cellular context for these structures is lagging. Yet to understand this context would be to know how collections of individual macromolecules assemble into the dynamic machines that form a living cell. Once these interactions are revealed, a new picture of the cell and its disease states is sure to emerge.
With achievable 2 nm resolution and perfect preservation of cellular structure, electron tomography (ET) now represents the highest resolution technique for examining biomolecules in their native cellular context. Indeed, cell biologists now dream of generating 3D images containing the entire proteome of a living cell. This dream remains out of reach, not because ET cannot visualize individual proteins, but because it is simply not possible currently to know which protein is which in a tomographic cellular reconstruction.
This presentation will describe methods being developed in our lab for creating electron dense nanoparticle tags for identifying cellular biomolecules by ET. These methods rely on the discovery of materials ribozymes and enzymes―RNA and protein/peptide sequences that can catalyze the formation of inorganic nanoparticles and control nanoparticle growth. The isolation and structure-function relationships of a number of materials ribozymes and enzymes will be shown.
In addition to visualizing biomolecule interactions in cells, we are working on ways to mimic and disrupt such interactions for disease treatment. We view this largely as a materials problem as well, and have been learning how to design metal nanoclusters to effectively interact with cellular biomolecules. A few lessons learned in our studies of cell and nuclear targeting and the prevention of viral infection will be described.
THURSDAY, September 10, 2009
4:00 p.m. CIRES Auditorium (note change of location) University of Colorado, Boulder
What controls the diurnal variability of carbon dioxide and reactive species?
Jordi Vilà-Guerau de Arellano Meteorology and Air Quality Section Wageningen University (The Netherlands) e-mail: jordi.vila@wur.nl http://www.met.wau.nl/medewerkers/vila/index.html
Abstract
We examine the main physical and chemical processes that determine the diurnal variability of atmospheric compounds in the boundary layer. In addition to surface processes, turbulent mixing and reactivity, we put special emphasis on investigating the role of the exchange of heat, water and chemical species between the free troposphere and the atmospheric boundary layer, namely the entrainment process. This process enhances the dilution of compounds and introduces free tropospheric air masses with different characteristics into the atmospheric boundary layer.
In the seminar, I will discuss several cases where entrainment plays a major role in the evolution of atmospheric compounds. By analyzing observational evidence or performing numerical experiments by the large eddy simulation technique and a conceptual (mixed-layer theory) model, we are able to find the contribution of entrainment to the diurnal variability of carbon dioxide or isoprene. Particular emphasis is placed on the need to maintain a balance in dynamic processes and the specific characteristic of each atmospheric compound.