Basics of Photochemistry: Photolysis Calculations

CHEM-5152 Advanced Atmospheric Chemistry

> *Prof. Jose L. Jimenez* University of Colorado-Boulder

Calculation of Photolysis Rates

Generic reaction: $A + hv \rightarrow B + C$

$$\frac{d[A]}{dt} = -J_A[A] = -\int \sigma_A(\lambda)\phi_A(\lambda)F(\lambda)d\lambda \times [A]$$

 J_A – first order photolysis rate of A (s⁻¹)

ndate: Feb 201

 $\sigma_A(\lambda)$ – wavelength dependent cross section of A (cm²/molec.)

 $\phi_{\rm A}(\lambda)$ – wavelength dependent quantum yield for photolysis

 $F(\lambda)$ – spectral actinic flux density (photons /cm²/s)

TUV Model from NCAR (as run for previous slides)			
NCAR National Center for Atmospheric Research UCAR Atmospheric Chemistry Observations & Modeling			
Modeling Master Mechanism TUV Calculator WRF-Chem	QUICK TUV CALCULATOR This web page runs the 5.2 version of the TUV model. You can run the model for a specified latitude, longitude and time (input option 1), or for a given solar zenith angle (input option 2). In either case, you must also specify the additional parameters in the second column. Also, you may select to print out the photolysis rates and/or the solar actinic flux spectrum at a given altitude above the surface (output option 1), or the erythemal UV and/or solar irradiance at that altitude (output option 2). For any problem, or to send comments, email TUV administrators.		
	Wavelength Start: End: [Increments] [280 420 140 Imput option 1 LATITUDE (deg): [0] LONGITUDE (deg): [0] [0] DATE (YYYYMHDD): 20150630 [1100] TIME (hh:mm:ss, GMT): 12:00:00 [] SOLAR ZENITH ANGLE [0] [] []	OTHER INPUT PARAMETERS OVERHEAD OZONE COLUMN[300 (du): SURFACE ALBEDO (0-1): GROUND ELEVATION (km asl): MEASUREM. ALTITUDE (km 0 asl): Clouds Opt. Depth: Base: 0.00 4.00 SO0 Aerosols Opt. Depth: [S-5.Ab]: Alpha: 0.235 0.990	Sunlight Direct beam: Diffuse down: Diffuse up: 1.0 0017PUT OPTION 1 (for Atmospheric Science) MOLECULAR PHOTOLYSIS FREQUENCIES (s-1) ACTINIC FLUX, SPECTRAL (quanta s-1 cm-2 nm-1) 0017PUT OPTION 2 (for Biology) IRRADIANCE, WEIGHTED (W m-2) IRRADIANCE, SPECTRAL (W m-2 nm-1)
	RADIATION TRANSFER MODEL © Pseudo-spherical 2 streams (faster, less a O pseudo-spherical discrete ordinate 4 stree GO!	iccurate) ams (slower, more accurate)	

rescence quantum yields (adapted from Johnston et al., 1996).

