

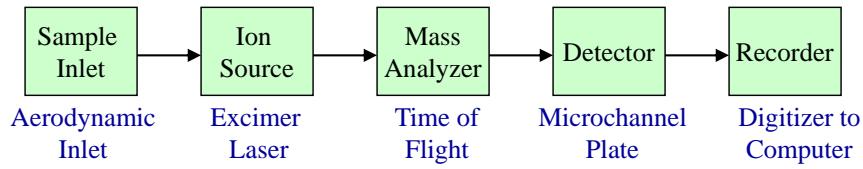
MS Interpretation-1: Introduction + Elemental Composition I

CU- Boulder
CHEM 5181
Mass Spectrometry & Chromatography

Prof. Jose-Luis Jimenez

A few slides adapted from an earlier version of notes from Dr. Dan Czicco (then @ NOAA, now @ MIT)
Last updated: Oct 2013

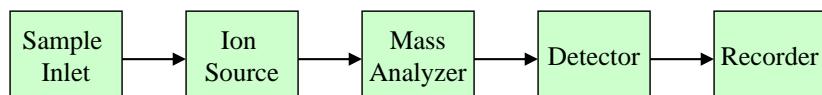
1


Business Items

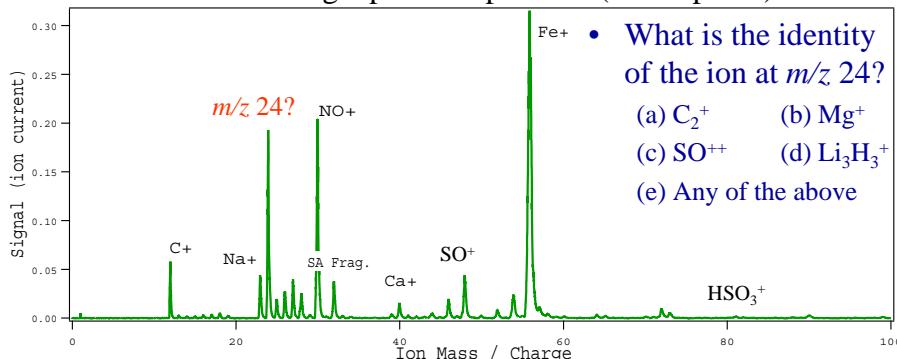
- Note: doing the McLafferty reading includes solving **ALL** the unknowns
 - Like for Igor, here each lecture builds quickly on the previous one
 - If you don't, you'll quickly fall behind!
- HW7 due Thu before the start of class
 - Submitted via email, discussed in class as usual
 - No printouts this time
- HW8 due next Thu, to be posted on Thu
- Discussion of reading & comments

2

Introduction to Interpretation



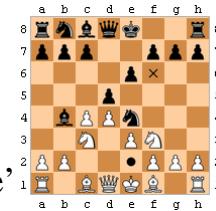
From Dr. Dan Cziczo


PALMS instrument
in nose of WB-57
stratospheric aircraft.
Murphy, Cziczo et al.

3

...Now What? - I

PALMS single particle spectrum (stratosphere)



From Dr. Dan Cziczo

4

...Now What? - II

- Most mass spectra are not trivial to decipher due to:
 - interferences (Mg^+ or C_2^+ on last page)
 - complexities of fragmentation
- Instead, MS Interpretation is problem solving, ‘playing chess’, or ‘cracking a code’
 - Use all available information in a logical and organized manner
- Focus: EI spectra of “small” organic molecules: M^{+*}
 - Easiest for teaching / learning, most logical progression
 - Most interpretation techniques are applicable to spectra obtained with other ionization techniques
 - See chapter 7 of de Hoffmann for introduction and references for fragmentation with other techniques (e.g. MH^+)

5

Interpretation Lectures vs. McLafferty Chapters

- Ch. 1: Introduction
- Ch. 2: Elemental Composition
- Ch. 3: The Molecular Ion
- Ch. 4: Basic Fragmentation Mechanisms
- Ch. 5: Postulation of Molecular Structures
- Ch. 6: Auxiliary Techniques
- Ch. 7: Theory of Unimolecular Ion Decomp.
- Ch. 8: Detailed Fragmentation Mechanisms
- Ch. 9: Fragmentation of Compound Classes
- Ch. 10: Computer Methods

Covered in instrum. part

This part of course

Advanced version, not covered in course

Useful for understanding how databases work

6

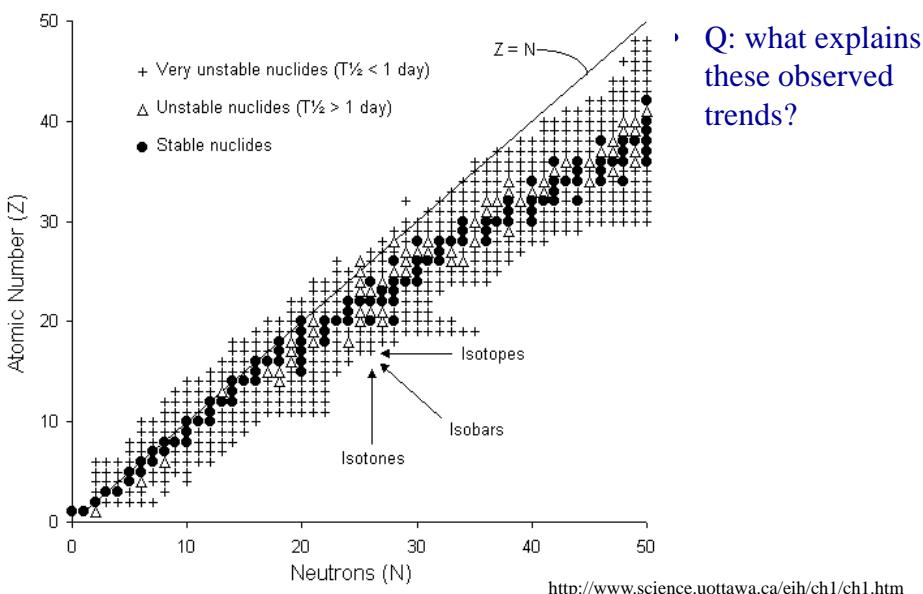
Standard Interpretation Procedure

1. Elemental Composition	<input type="checkbox"/>	2.7. Explain important frags	<input type="checkbox"/>
1.1. Choose peak group(s)	<input type="checkbox"/>	2.8. Logical neutral losses	<input type="checkbox"/>
1.2. Build Table	<input type="checkbox"/>	2.9. M^{+} : most atoms each el.	<input type="checkbox"/>
1.3. A+2 elements	<input type="checkbox"/>	2.10. M^{+} abundance vs struct.	<input type="checkbox"/>
1.4. A+1 elements	<input type="checkbox"/>		
1.5. Oxygen	<input type="checkbox"/>		
1.6. Hydrogen losses	<input type="checkbox"/>	3. Study General Appearance of the Spectrum	
1.7. A elements	<input type="checkbox"/>	3.1. Molecular stability	<input type="checkbox"/>
1.8. Exotic elements	<input type="checkbox"/>	3.2. Low-mass ion series	<input type="checkbox"/>
1.9. RPDB	<input type="checkbox"/>	3.3. Imp. characteristic ions	<input type="checkbox"/>
1.10. Noise level	<input type="checkbox"/>		
2. Molecular ion identity	<input type="checkbox"/>	4. Check your ID	
2.1. Identify Candidate M^{+}	<input type="checkbox"/>	4.1. Compare to MS of similar	<input type="checkbox"/>
2.2. Check that M^{+} is OE^{+}	<input type="checkbox"/>	4.2. Check against database	<input type="checkbox"/>
2.3. N-Rule: N in M^{+} , frags	<input type="checkbox"/>		
2.4. Check most frag. are EE^{+}	<input type="checkbox"/>		
2.5. Mark important OE^{+}	<input type="checkbox"/>		
2.6. Even vs odd at low m/z	<input type="checkbox"/>		

Adapted by Jose from McLafferty & Turecek

Suggestions for Improvement most welcome.

- ALWAYS Follow & annotate with step name


7

References on MS Interpretation

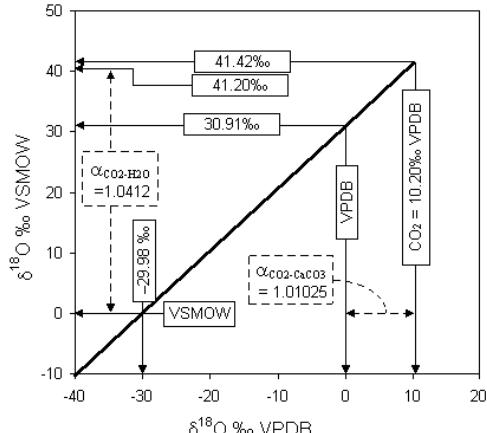
- **McLafferty & Turecek**, Interpretation of Mass Spectra, 4th Ed., 1993.
 - Best book on the subject, **must** have for class
 - We will follow it closely
- Smith & Busch, Understanding Mass Spectra, 1999.
 - Alternative to McLafferty, somewhat easier to read
- Lee, A beginner's Guide to Mass Spectral Interpretation, 1998.
 - More basic, easy to read. Useful introduction before tackling McLafferty.
- Sorrell, Interpreting Spectra of Organic Molecules, 1988.
 - Older and more general.

8

Why are there isotopes?

Natural Abundances of Stable Isotopes

Table 2.1. Natural isotopic abundances of common elements.^a


Element	A		A + 1		A + 2		Element type
	Mass	%	Mass	%	Mass	%	
H	1	100	2	0.015			"A"
C	12	100	13	1.1 ^b			"A + 1"
N	14	100	15	0.37			"A + 1"
O	16	100	17	0.04	18	0.20	"A + 2"
F	19	100					"A"
Si	28	100	29	5.1	30	3.4	"A + 2"
P	31	100					"A"
S	32	100	33	0.79	34	4.4	"A + 2"
Cl	35	100			37	32.0	"A + 2"
Br	79	100			81	97.3	"A + 2"
I	127	100					"A"

^aWapstra and Audi (1986).

^b1.1 ± 0.02, depending on source.

- Note that the isotope of lowest mass is the most abundant for all of **these** elements
 - "A", "A+1", and "A+2" elements

What about deviations from natural abundances?

- VSMOW: Vienna Standard Mean Ocean Water
- Vienna Pee Dee Belemnite

Clicker Q: the chart to the right shows the conversion between two standards for ^{18}O , as well as the fractionation due to some processes. Do we have to worry about such fractionations in class?

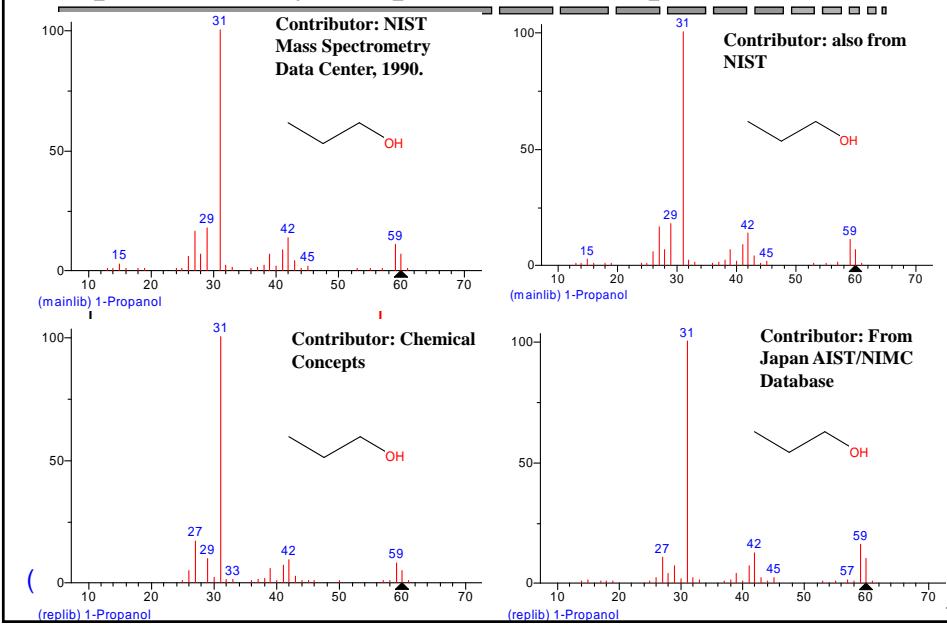
- A. Always
- B. Never
- C. In some cases (frequent)
- D. In some cases (rare)
- E. I don't know

<http://www.science.uottawa.ca/eh/eh1/ch1.htm>

11

What about noise in the spectra?

- McLafferty states the level of noise to expect in all his spectra:
 - Convention of always assigning 100% to the strongest peak in the spectrum
 - Other fields of MS such as my group use other conventions, so beware that's not universal!
 - Noise: 10% of the intensity of the peak, or $\pm 0.2\%$ of the base peak, whichever is greater.
- Questions:
 - For the base peak its intensity is 100%, what is the level of noise to expect?
 - For a peak with an intensity of 1%-absolute (i.e. 1% of the intensity of the base peak), what is the level of noise to expect?
 - For which intensity do both sources of noise equal?
 - This separates small vs large peaks
 - This applies ONLY to the McLafferty unknowns!
- Unknowns from other sources (most class examples, exams, your own research, the literature, etc.):
 - You don't know a priori the magnitude of the noise
 - Large ions should always have better SNR than the small ones
 - You can estimate the level of noise from the spectra (step 1.10 of the SIP).


12

Reproducibility / Signal-to-Noise

- Be aware that database (and other) spectra have limited signal-to-noise and some instrument-to-instrument variability
- Database examples depend on instrument used
- Be aware that background / leak / contaminant peaks may be present that are not related to the molecule of interest
 - Take a “background” spectrum just before your analysis
- Make sure m/z values are correct!

13

Reproducibility: 4 Spectra of 1-Propanol in NIST

A+2 Elements IV

- Linear superposition of isotopic patterns
 - If there is more than one atom in the molecule of one of the A+2 elements, the result is even more striking

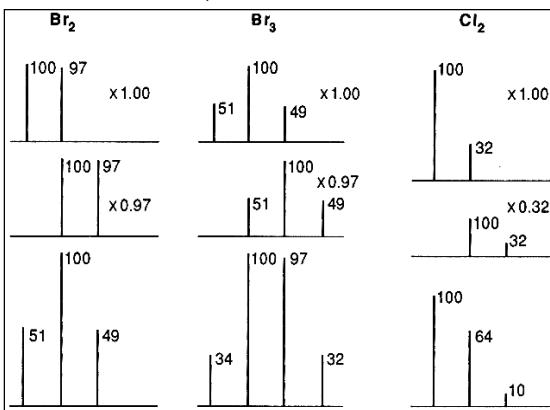


Figure 2.1. Linear superposition of bromine and chlorine peak patterns.

15

Isotopic peaks for 'n' atoms of same element

- Combinatorial problem
 - Same as coefficients of binomial formula $(a+b)^n$

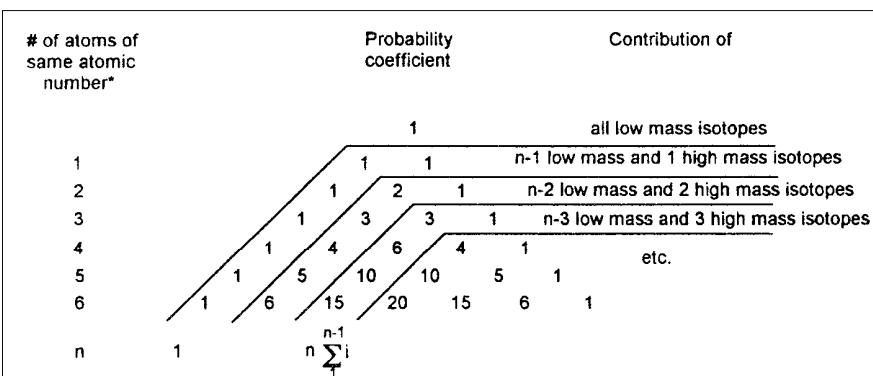
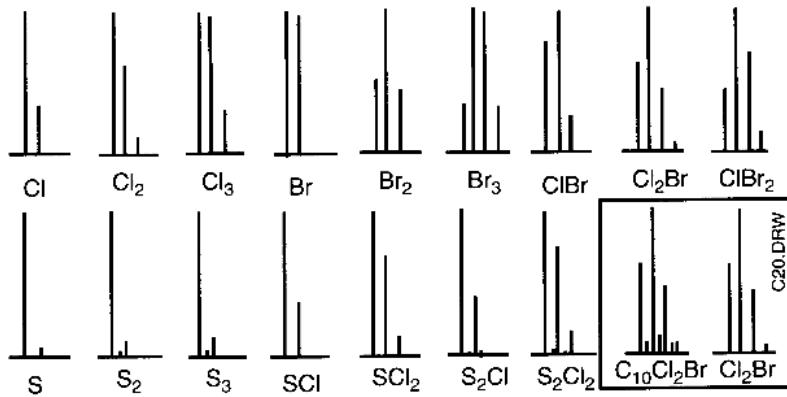



Figure 2.8. Binomial expansion (Pascal's) triangle. $\sum_{i=1}^{n-1} i = n(n-1)/2$. (*Assume the element in question has only two isotopes contributing to isotope peak ratios.)

From Smith and Busch, 1999

More Isotopic Peaks

Figure 5.3

Useful isotope combinations in mass spectrometry. Isotopes of other atoms that are possibly associated must always be taken into account, as is shown in the framed section

17

Group Question

MT.2 How many isotopic forms of the molecular ion of C₁₁Cl₁₁ exist? How many nominal masses are represented?

18

A+2 Elements V

- Oxygen isotopes
 - The A+2 abundance of O is low (0.2%)
 - Need high abundance accuracy & precision
 - Other isotopic patterns can interfere (C), thus estimate number of oxygen after A+1 and other A+2 elements
- Absence of A+2 elements
 - Often they are **not there**. Value of negative info
 - If $[(X+2)]/[X] < 3\%$, the peak X *cannot* contain the most abundant isotope of Si, S, Cl, or Br

19

A+1 Elements: C and N

- ${}^2\text{H}/{}^1\text{H}$ is so small that it is considered “A”
- Increasing number of C atoms linearly increases the probability that one of them is a ${}^{13}\text{C}$ (see table 2.2)
 - A way to deduce the number of carbon atoms
 - 1.1% of ${}^{13}\text{C}$ changes ~2% with source
- Don’t worry about **N** for now (next class)
 - “Nitrogen Rule” will come to our rescue

20

Number of Carbon Atoms

Table 2.2. Isotopic contributions for carbon and hydrogen. If the abundance of the peak A is 100 (after correction for isotopic contributions to it), then its isotopic contributions will be:

	(A + 1)	(A + 2)		(A + 1)	(A + 2)	(A + 3)
C ₁	1.1	0.00	C ₁₆	18	1.5	0.1
C ₂	2.2	0.01	C ₁₇	19	1.7	0.1
C ₃	3.3	0.04	C ₁₈	20	1.9	0.1
C ₄	4.4	0.07	C ₁₉	21	2.1	0.1
C ₅	5.5	0.12	C ₂₀	22	2.3	0.2
C ₆	6.6	0.18	C ₂₂	24	2.8	0.2
C ₇	7.7	0.25	C ₂₄	26	3.3	0.3
C ₈	8.8	0.34	C ₂₆	29	3.9	0.3
C ₉	9.9	0.44	C ₂₈	31	4.5	0.4
C ₁₀	11.0	0.54	C ₃₀	33	5.2	0.5
C ₁₁	12.1	0.67	C ₃₅	39	7.2	0.9
C ₁₂	13.2	0.80	C ₄₀	44	9.4	1.3
C ₁₃	14.3	0.94	C ₅₀	55	15	2.6
C ₁₄	15.4	1.1	C ₆₀	66	21	4.6
C ₁₅	16.5	1.3	C ₁₀₀	110	60	22

For each additional element present, add *per atom*:

(A + 1): N, 0.37; O, 0.04; Si, 5.1; S, 0.79.

(A + 2): O, 0.20; Si, 3.4; S, 4.4; Cl, 32.0; Br, 97.3.

Typical values for (A + 4): C₂₅, 0.02; C₄₀, 0.13; C₁₀₀, 5.7.

21

Note from Unknown 2.4

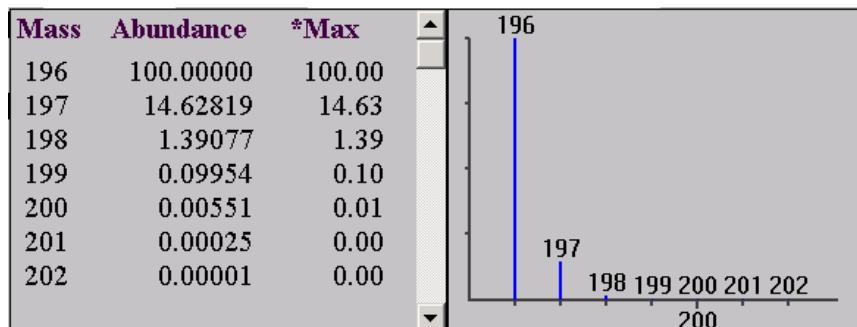
- Note the many small peaks below the major ones, due to neutral losses of H and H₂
- *If you don't see those, the molecule likely has no H*
 - As simple as this seems, not using this rule has led to losing tons of points in past CHEM-5181!
- Also note that those peaks are less important in determining the structure
 - E.g. can't do C isotopes w/ 27 or 41
 - Start with the higher m/z (overall and in each group of peaks)

22

Possible Interferences

- We **assumed** that the only contributions to A+1 and A+2 peaks were from isotopes of the A peak
- Fragment ions can **also** add to the signal at A+1 and A+2
- A+2 elements of A-2 peak (or A+1 elements of A-1 peak) can add to A peak
 - Would produce erroneously low values for an element

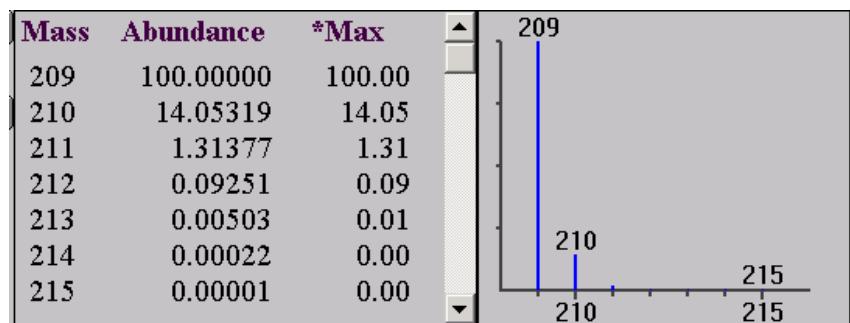
23


A Elements: H, F, P, and I

- After the number of A+1 and A+2 elements have been assigned, A elements should provide the **balance** of the mass
 - Use number of atoms consistent with **rules of bonding** (no CH₆ please!)
 - Note that only H can be used until we need to add 19 (F)

24

Group Question

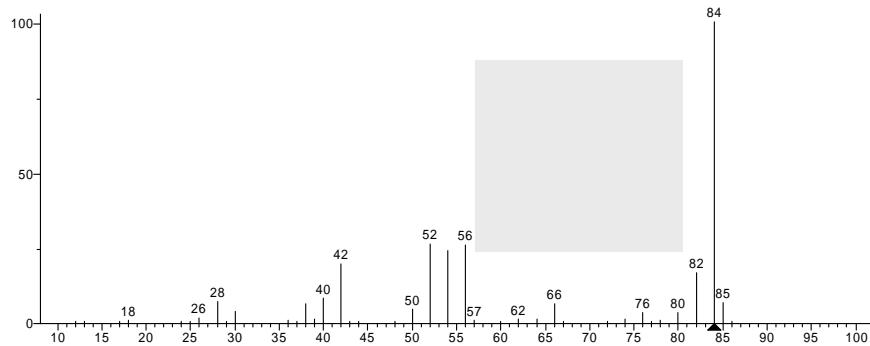


Determine the elemental composition of the following molecular ion. Note that there isotopic abundances are exact, there is no error.

- Work in groups, list evidence in board IN ORDER of use
- Note: this was in a cume in 2006

25

Group Question II



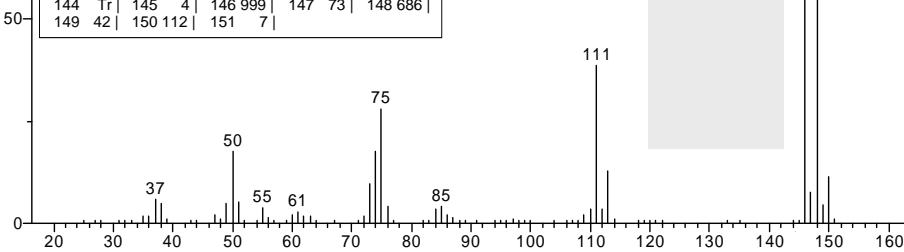
Determine the elemental composition of the following molecular ion. Note that there isotopic abundances are exact, there is no error.

- Work in groups, list evidence in board IN ORDER of use
- Note: this was in a cume in 2006

26

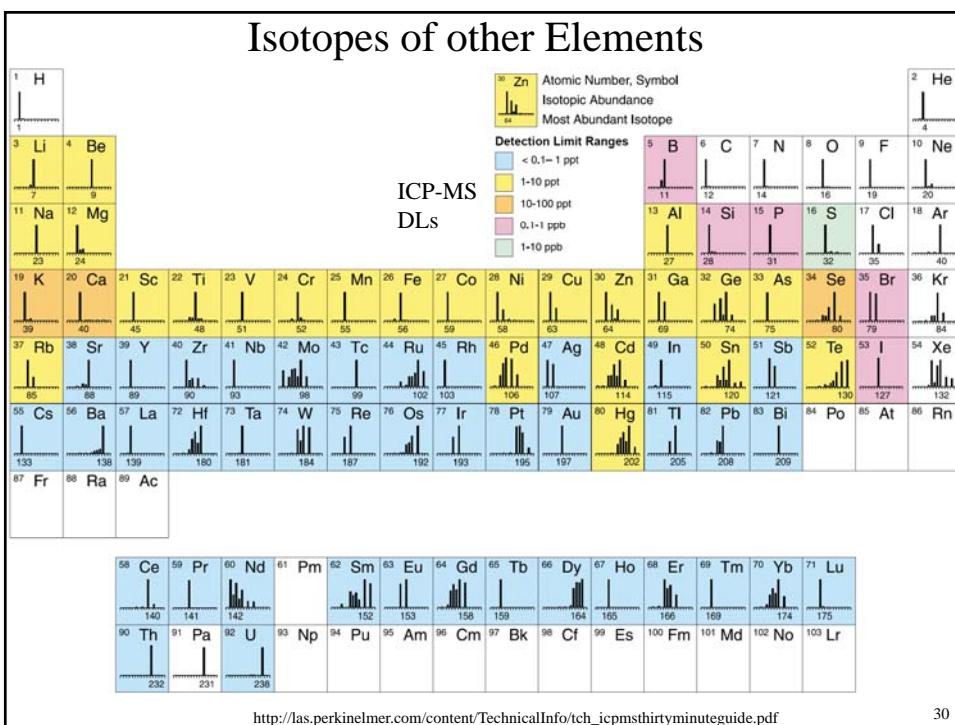
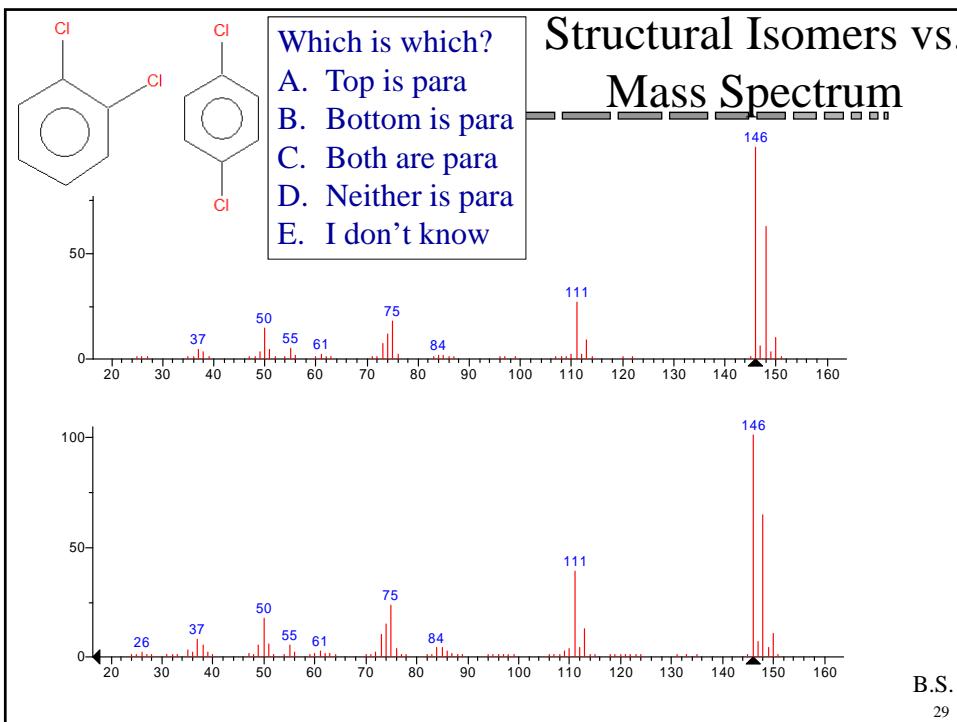
Group Question: identify this molecule

10 largest peaks:

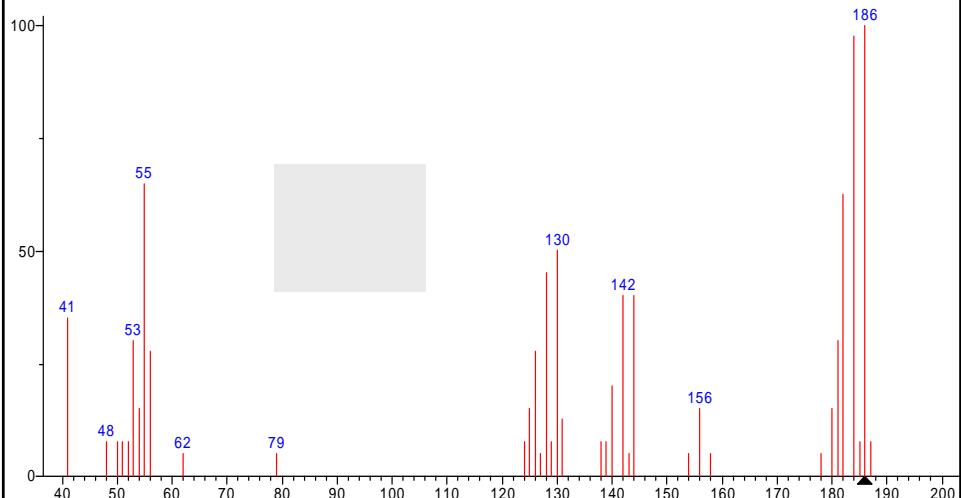

84 999	52 261	56 259	54 239	42 197
82 167	40 81	28 72	85 68	66 65

- Work in groups, list evidence in board IN ORDER of use
- Note: this has been a past HW & exam

27



Group Question: identify this molecule

10 largest peaks:
146 999 148 686 111 381 75 274 50 173
74 173 113 125 150 112 73 95 147 73
78 m/z Values and Intensities:
25 5 27 2 28 5 31 Tr 32 3
33 Tr 35 17 36 14 37 58 38 47
39 9 43 Tr 44 Tr 47 20 48 9
49 45 50 173 51 51 52 3 54 2
55 37 56 12 57 Tr 59 1 60 20
61 26 62 16 63 17 64 1 67 Tr
71 3 72 17 73 95 74 173 75 274
76 38 77 2 82 Tr 83 2 84 31
85 40 86 20 87 12 88 2 89 Tr
91 Tr 94 Tr 95 1 96 4 97 8
98 2 99 3 100 Tr 104 Tr 106 Tr
107 3 108 4 109 19 110 34 111 381
112 34 113 125 114 7 118 1 119 1
120 3 121 Tr 122 2 133 Tr 135 Tr
144 Tr 145 4 146 999 147 73 148 686
149 42 150 112 151 7



- Work in groups, list evidence in board IN ORDER of use
- Note: this has been a past HW & exam

28

Find Unusual Element in this Molecule

