Lecture Interp-3: The Molecular Ion

(McLafferty & Turecek 1993, Chapter 3)

CU- Boulder
CHEM-5181
Mass Spectrometry & Chromatography

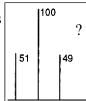
Prof. Jose-Luis Jimenez

Last Updated: Oct. 2013

1

Business Items

- Delinquent HW questions:
 - 10.1: LV install status: missing Abby, Lucas, Randall, Suichi
 - https://piazza.com/class/hiy250ehses101?cid=106
 - 10.3: Asana install and test: missing Lucas, Randall, Ted, Scott
 - Please complete by the end of the week to save ½ of the HW points.
 - May assign tasks via Asana in the future, you need to monitor it
- Office hrs tomorrow Wed 4:30-6 per usual
- Questions or comments?


Standard Interpretation Procedure

- 2. Using isotopic abundances (where possible) deduce the elemental composition of each peak in the spectrum; calculate rings plus double bonds (last day).
- 3. Test molecular ion identity; must be the highest mass peak in spectrum, odd-electron ion, and give logical neutral losses. Check with CI or other soft ionization (TODAY).
- 4. Mark 'important' ions: odd-electron and those of highest abundance, highest mass, and/or highest in a group of peaks (TODAY).

3

The Molecular Ion

- Most valuable info of the mass spectrum
 - Molecular mass
 - Elemental composition
 - Fragments must be consistent with it
- Not always stable with EI
 - Careful about overinterpreting peak of highest m/z!
 - Use soft-ionization such as CI in parallel
 - But careful with e.g. Na+ adducts
- MS Definition:
 - m/z of the molecular ion is the peak that contains the most abundant isotope of all the elements involved (by convention)
 - Won't always be most abundant peak

Requirements for the Molecular Ion (EI)

- Necessary but not sufficient conditions
 - It must be the ion of highest mass (isotope caveat)
 - It must be an odd-electron ion (for EI)
 - It must be capable of yielding the most important ions in the high-mass region by loss of *logical* neutral species
- If candidate fails either test, cannot be MI
- If candidate passes all tests, may or may not be MI

5

Odd-Electron Ions

- For EI, molecule becomes ionized by loosing one electron
 - Must have an unpaired electron (so it's a radical)

R:
$$\overset{.}{\circ}$$
:R \longrightarrow R: $\overset{.}{\circ}$:R or R $\overset{.}{\circ}$:R or ROR $^{+}$:

H₂C: $\overset{.}{\circ}$:CH₂ \longrightarrow H₂C $\overset{.}{\circ}$:CH₂ or H₂C= $\overset{.}{\circ}$ CH₂ $^{+}$:

H

H: $\overset{.}{\circ}$:H \longrightarrow H: $\overset{.}{\circ}$:H or CH₄ $^{+}$:

From McLafferty, Fig. 3.1-3..

Even Electron Ions

- Even-electron ions:
 - All electrons on the outer shell are fully paired
 - Generally more stable
 - Often the more abundant fragment ions

$$CH_4^{+} \rightarrow CH_3^{+} + H^{-}$$

 Most ESI, CI (e.g. H⁺ transfer) give even electron ions such as MH⁺, resulting in lower fragmentation

7

More on Odd- & Even-Electron Ions

- If you can establish the elemental composition of the molecular ion (or *any* ion), the rings-plus-double-bonds rule will show whether ion is odd or even-electron:
 - Even: integer + 1/2 RPDB
 - Odd: integer RPDB
 - $-C_xH_yN_zO_n$:

RPDB = x - 1/2 y + 1/2 z + 1

- Even or Odd?
 - $-C_5H_5N^+$
 - $-C_7H_5O^+$
 - $-H_3O^+$

Clicker answer:

- A. All odd
- B. 2 odd and 1 even
- C. 1 odd and 2 even
- D. Some more even than others
- E. I don't know
- F. Even Schmeven

The Nitrogen Rule I

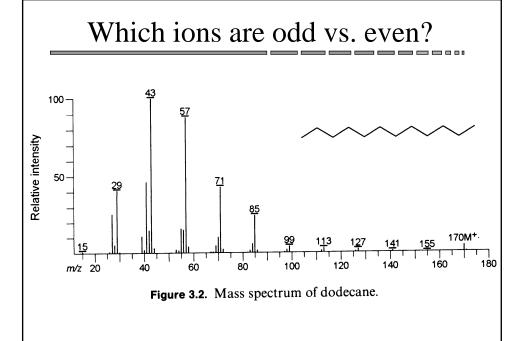
- For most elements in organic compounds, there is a relationship between mass of the most abundant isotope and the valence
 - Both odd or both even
 - N is the exception

Element	Mass	Valence
<u>н</u>	1	1
C	12	4
O	16	2
F	19	1
Si	28 (30)	4
P	31	3
S	32 (34)	2
C1	35 (37)	1
Br	79 (81)	1
I	127	1

٠..

The Nitrogen Rule II

• 'Nitrogen Rule': If a compound contains no (or even number of) N atoms, its molecular ion will be at an even mass number


Formula	Nominal mass
C ₂ H ₆	30
C_8H_{18}	114
C_2H_6O	46
$C_3H_6O_2$	74
CH_2Cl_2	84, 86, 88 (isotopes)
C_2F_6	138
CS_2	76
CH ₃ I	142
NH ₂	17
C_5H_5N	79
	C ₂ H ₆ C ₈ H ₁₈ C ₂ H ₆ O C ₃ H ₆ O ₂ CH ₂ Cl ₂ C ₂ F ₆ CS ₂ CH ₃ I

The Nitrogen Rule III

- N-Rule applies to all ions
 - An odd-electron ion will be at an even mass number if it contains an even number of nitrogen atoms
 - An even-electron ion containing an even number of nitrogen atoms will appear at an odd mass number

Table 3.1. Nitro	able 3.1. Nitrogen rule.					
Mass values:	Odd	Even				
$N_0, N_2, N_4, \dots $ N_1, N_3, N_5, \dots	EE ⁺	OE+				

11

Nitrogen Rule Practice

- Which of the following are OE⁺ and EE⁺?
- Which have odd and even mass? Does it agree with N-Rule?
 - $-C_2H_4^+$
 - $-C_3H_7O^+$
 - $-C_4H_9N^+$
 - $-C_3H_0^+$
 - $-\;C_4^{}H_8^{}NO^+$
 - $-C_7H_{15}ClBr^+$
 - $-C_{3}F_{10}^{+}$
 - $-C_{29}F_{29}^{+}$
 - $-C_3H_9SiO^+$

Clicker Q: how many are odd vs even electron ions?

- A. 6 odd and 3 even
- B. 5 odd and 4 even
- C. 4 odd and 5 even
- D. 3 odd and 6 even
- E. I don't know
- F. I am not paying attention

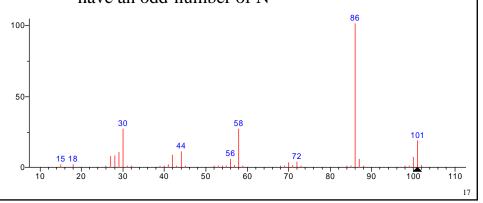
13

Clicker Question: N-Rule

- Choose one answer below
 - A. An odd-electron ion will be at an even mass number if it contains an even number of nitrogen atoms
 - B. An odd-electron ion will be at an odd mass number if it contains an even number of nitrogen atoms
 - C. An even-electron ion containing an even number of nitrogen atoms will appear at an odd mass number
 - D. A and C
 - E. A, B, and C

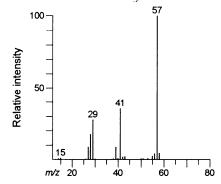
Relative Importance of Peaks

- OE ⁺⁻ have special mechanistic significance
 - Mark all *important* OE + ions directly on the spectrum
- Importance increases with
 - Intensity
 - -m/z
 - Mass in the peak group
 - What about isotopic peaks (e.g. ¹³C)?


15

Clicker Question

- A. CH_4^{++} is an odd electron ion
- B. H₂O⁻ is an odd electron ion
- C. ¹³CH₄⁺ is an odd electron ion
- D. A, B, and C
- E. I don't know


Imp. OE + ions at low *m/z: unlikely!*

- Important OE + ions are even less likely at low *m/z*
 - Intense even mass peaks in that region usually have an odd-number of N

Corollary to the Nitrogen Rule

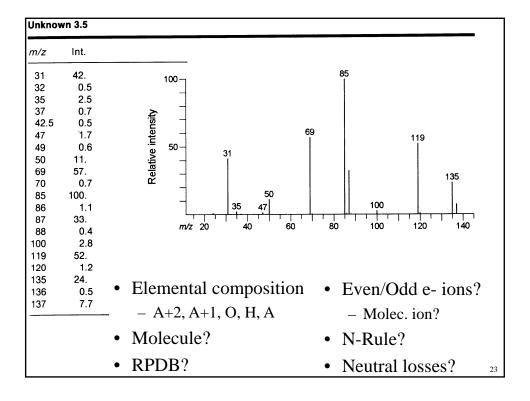
- A scarcity of important even-mass ions, especially at lower *m*/*z*, indicates an even mass-molecular weight
 - The reverse is not always true!

From McLafferty, Fig. 3.1

Logical Neutral Losses I

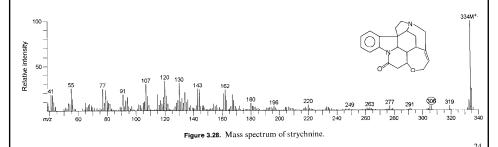
- Only a certain number of low mass neutral fragments are commonly lost in decompositions of molecular ions
- Small neutral fragments lost from the molecular ion are commonly those attached by a single bond
 - Mass losses of 4 to 14 and 21 to 25 that give important peaks are highly unlikely - WHY?

19


Logical Neutral Losses II

- The presence of an 'important' ion separated from the highest mass ion by an anomalous mass or elemental formula will indicate that the latter ion is not the molecular ion!
 - E.g., if there is an abundant ion 5 mass units below the ion of highest m/z, can that be the molecular ion?
- Clicker Q: Can the ion of highest mass (first) be the molecular ion if the following are the major ions of high mass?
 - A. $C_{10}H_{15}O$, $C_{10}H_{14}O$, $C_{9}H_{12}O$, $C_{10}H_{13}$, $C_{8}H_{10}O$
 - B. $C_{10}H_{14}$, $C_{10}H_{13}$, $C_{9}H_{11}$, $C_{8}H_{9}$, $C_{7}H_{8}$, $C_{7}H_{7}$
 - C. Both can be
 - D. Neither can be
 - E. I don't know

Δ^{s}			Mas	ss			Formula	Example ^{b, c}
-4						79	Br	R
						121	C ₇ H ₅ O ₂	Benzoates
				51	65		C₃HN, C₄H₃N	Some nitrogen heterocyclic compounds
-3			38				H ₆ O ₂	Some polycarboxylic acids
-2			39	53	67		C"H" 3	Allyl esters and some cyclic carbonates—specific rearrangement loss ($C_nH_{2n-1}-2H$); some propargyl and allenic derivatives
-1		26	40	54			C,H2n-2	Aromatics; alkenyl aryl ethers
				54	68	82	$C_n H_{2n-2}$	4-Y-cycloalkenyls; $M^{+-} - 69 - (68)_n$ in polyisoprenes ^c
				54			C ₃ H ₂ O	Cyclic—CO—CH=CH—
		26	40				C _n H _{2n} CN	R 5 CN, R 4 CH ₂ CN (stable R ⁺ only)
0.		27	41	55	69,	etc.	C_nH_{2n-1}	RCOOR'-specific rearrangement loss of (R $-$ 2H) or (R' $-$ 2H) $+$ (R $-$ H also from carbonates, amides, larger ketones, etc.; loss of activated C $_n$ H $_{2n-}$, groups
		27					HCN	Nitrogen heterocyclic compounds, cyanides, aryl-NH2, enamines, imine
+1	(±14: F	Hom	olog	ous	impu	ırity)		
		28	42	56			C_nH_{2n}	RCH_2COCH_2R -specific rearrangement loss of $(R-H)$ or $(R-H)_2$, also from many unsaturated functional groups; retro-Diels-Alder c
	14						N	Aryl—NO
		28					N_2	Aryl—N=N—Aryl,>C=N ₂ , cyclic—N=N—
		28					CO	Aromatic oxygen compounds (carbonyls, phenols), cyclic ketones, $R \ni C {\Longrightarrow} O^{+c}$
			42	56	70		C _n H _{2n} CO	Unsaturated acetamides, alkanoates; di-, cyclic, and complex ketones; specific H rearrangement loss of —CR ₂ —CO—
+2		29					CH₃N	Some unsaturated-, aryl-N(CH ₃) ₂
			43	57	71		HNCO, C _n H _{2n-1} NO	Loss of-NR-CO-from carbamates, cyclic amides, uracils
	1						Н	Labile H; arylCH₂H, RC≡-CH, alkyl cyanides, lower fluorides and aldehydes (stable RCO+), cyclopropyl compounds
	15	29	43	57	71,	etc.	C_nH_{2n+1}	Alkyl loss: α-cleavage or branched site favored (loss of largest R); elimination from cycloalkyl group with Η rearrangement ^δ
		29	43	57			$C_nH_{2n+1}CO$	$C_nH_{2n+1}CO \leftarrow R$ (stable R ⁺ only)


Molecular Ion Abundance I

- Abundance of molecular ion depends on:
 - Its stability (often not in spectrum)
 - The amount of energy needed to ionize the molecule
- There is a correlation between those properties and the structure of the molecule
 - The magnitude of M⁺⁻ provides an indication about the structure of the molecule

Molecular Ion Abundance II

- In general the chemical stability of M⁺⁻ parallels the stability of the molecule
 - $-\ M^{\scriptscriptstyle +\cdot}$ increases with 'un-saturation' and rings
 - $-\ M^{\scriptscriptstyle +\cdot}$ decreases with chain branching
 - Effect of MW is not as clear

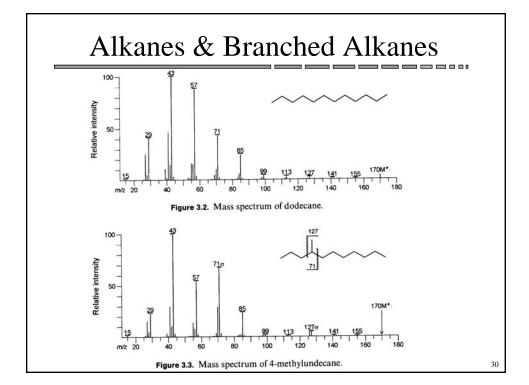
Molecular Ion Abundance III

- If less energy is needed to ionize the molecule, more molecular ions of lower internal energy ('cool' ions) will be formed
 - M⁺⁻ will be higher
- Ease of ionization increases down on a column in the periodic table or to the left in a row
 - E.g alcohols vs. mercaptans (3.8 vs. 3.21)
 - E.g. alcohols vs. amines (3.8 vs. 3.16)

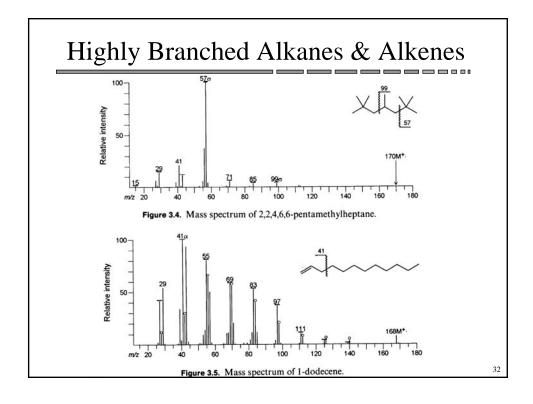
	Table A.4. Molecu	ular ion abundances vs. compound type (C. indicates an unbranched alkyl chain of n carbon atoms).					
	TODO ALA	Intensity of M ⁺ peak relative to most intense peak					
	Compound type	M.W. ∼ 75		M.W. ~ 130		M.W. ~ 185	
Appendix:	Aromatic	\bigcirc	100		100		100
Very useful	Heterocyclic		100		100		100
tables from			100		100		100
McLafferty	Cycloalkane	H	70	HH	90	H	90
3	Thiol	C _s SH	100	C,SH	40	C ₁₀ SH	46
	Sulfide Conjugated olefin	C.SC ₂ Hexatriene	65 55	C₁SC∉ allo-Ocimene	45 40	C ₅ SC ₅	13
	Olefin	C ₂ C=CC ₂	35	C3C—CC4	20	C,,C—C	3
7D 11 A 4 N (C*C=CC	7		
Table A.4: M ⁺	Amide	C ₂ CONH ₂ HCON(C ₁) ₂	55 100	C ₆ CONH ₂ C ₁ CON(C ₀) ₀	1	C ₁₁ CONH ₂ C ₁ CON(C ₄) ₂	1 5
	Acid	C ₂ COOH	80	C _n COOH	0.5	C ₄ COOH	9
Abundance vs.							
compound							
type		0.000	25	C,COC,	8	CaCOCs	8
type	Ketone"	C1COC2	25	C-COC,	3	C.COC,	10
	Aldehyde ^a	C ₃ CHO	45	C ₇ CHO	2	C ₁₂ CHO	5
	Alkane	C ₆	9	C,	6	C ₁₃	5
	Amine ^a	C₄NH₂ (C.) MH	10 30	C ₈ NH₂ (C₄)₂NH	0.5 11	C ₁₂ NH ₂ (C ₂) ₂ NH	2
		(C ₂) ₂ NH	30	(C ₄) ₂ NH (C ₂) ₃ N	20	(C ₇) ₂ NH (C ₄) ₃ N	7
	Ether*	C2OC2	30	C4OC4	2	C ⁶ OC ⁶	0.05
	Ester*	C,COOC	20	C,COOC,	0.1	C ₁ COOC _a	0.1

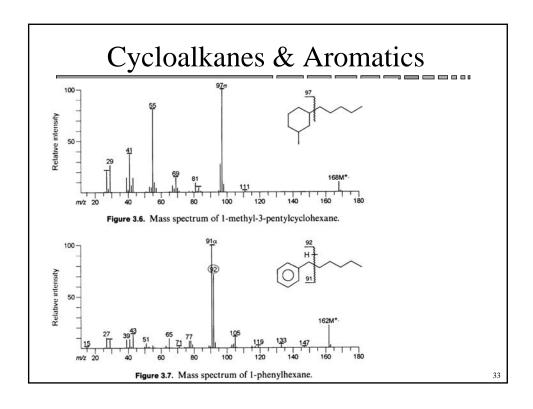
Table A.6 Common Fragment Ions

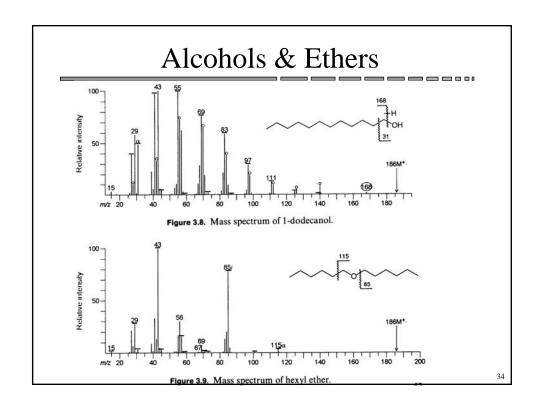
Table A.6. Common fragment ions (*, most important source for this mass per McLafferty and Venkataraghavan 1982).

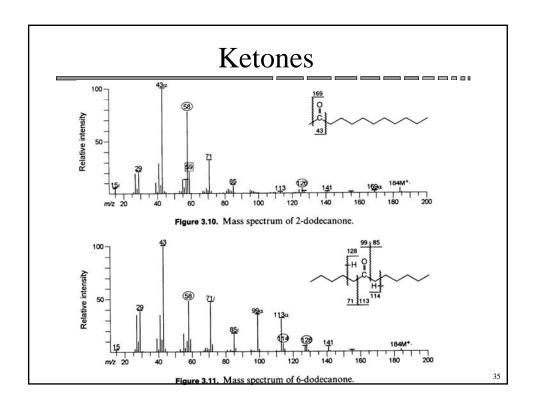

Δ^s			m/z					Formula	Compound type ^b
Х	31, 50, 69, 100, 1	19, 1	31, 16	9, 18	1, 193			C,F,	Perfluoroalkanes
Х	38, 39, 50*, 51*, 6	63*, E	4*, 65	5*, 74,	75*,	76*		Aromatic series—low	More abundant for aromatic compounds with electroneg substituents
Х	39, 40, 51, 52*, 69	5, 66	67.	77*. 7	8*, 79			Aromatic series—high	More abundant with electron-donating substituents, N ar heterocycles
Х	87-89*, 99-101, 150-152	112.	113, 1	125–1	27*, 1	38, 13	9,	Polycyclic aromatics	Plus ions of low aromatic series
Х	45, 57, 58, 59, 69	, 71,	83-85	5, 97,	98, 10	9-112	2	Endo-sulfur aromatic series	Thiophenes
Х	69, 81-84, 95-97	', 107	-110					Exo-sulfur aromatic series	Sulfur attached to an aromatic ring
Х	73, 147, 207, 221.	, 281	, 295,	355					Dimethylsiloxanes
-7			76*	90*	104*	118*	132*	$C_n H_{2n-8}$	R-phenyl=HY*, R-phenyl=YY', R-phenyl-C _n H _{2n-1} =H
-6			77*	91*	105	119*	133*	$C_6H_5C_nH_2$,	Phenylalkyl (specific cleavage, also rearrangement)
					105*	119	133	$C_nH_{2n+1}C_6H_4CO$	Benzoyl (specific); 119 and above, unsaturated or cyclic phenoxy
		63	77	91				$C_n H_{2n+1} O_3$	ROCOOR-specific rearrangement loss of (R $-$ 2H) or (R $-$ 2H) $+$ (R $-$ H)
	49	63	77	91	105			C _n H _{2n} Cl	Chloroalkyl; m/z 91 largest for R(CH ₂) ₅ Cl
-5			77	91	105	119	133	$C_nH_{2n-7}N$	R-pyridyl=HY*, R-phenyl-N(R')=YY', etc. (see 76, 90,
				92*	106*	120*	134*	$C_n H_{2n-6}$	R-phenyl—CR'R"—Z—H
				92	106	120	134	$C_n H_{2n-8} O$	(—O—phenyl—R)—HY*, (—O—phenyl—R)—YY', R-phenyl—COCHR'—Z—H
			78	92	106	120	134	C ₅ H ₄ NC _n H _{2n}	Pyridyl, aminoaromatic (specific cleavage, also rearrangement)
									27

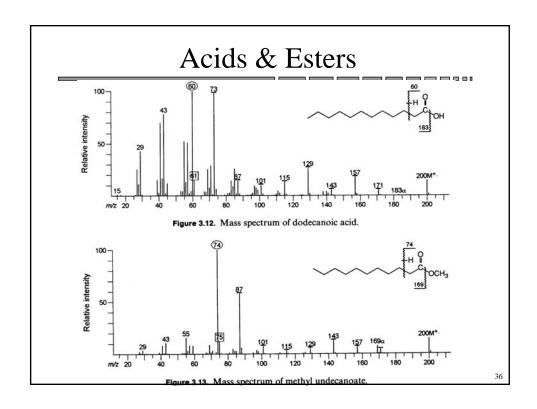
• Table A.7: Common elemental compositions of molecular ions

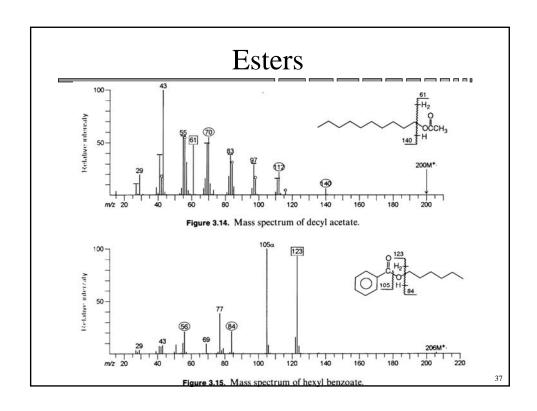

/z	Composition								
16	CH ₄								
17	H ₃ N								
18	H ₂ O								
26	C ₂ H ₂								
27	CHN								
28	C ₂ H ₄ , CO, N ₂								
30	C₂H ₈ , CH₂O, NO								
31	CH ₈ N								
32	CH ₄ O, H ₄ N ₂ , H ₄ Si, O ₂								
34	CH ₃ F, H ₃ P, H ₂ S								
36	HCI								
10	C ₃ H ₄								
11	C_2H_3N								
12	C ₃ H ₆ , C ₂ H ₃ O, CH ₂ N ₂								
13	C ₂ H ₅ N, HN ₃								
14	C ₂ H ₄ O, C ₃ H ₈ , C ₂ HF, CO ₂ , N ₂ O								
15	C₂H₂N, CH₃NO								
16	C ₂ H ₆ O, C ₂ H ₃ F, CH ₆ Si, CH ₂ O ₂ , NO ₂								
18	C ₂ H ₅ F, CH ₄ S, CH ₅ P								
50	C ₄ H ₂ , CH ₃ CI								
52	C ₄ H ₄ , CH ₂ F ₂								
53	C ₃ H ₃ N, HF ₂ N								
54	C₄H ₆ , F₂O								
55	C ₃ H ₅ N								
6	C4H8, C3H4O, C2H4N2								
7	C ₃ H ₇ N, C ₂ H ₃ NO								
8	C ₃ H ₆ O, C ₄ H ₁₀ , C ₂ H ₂ O ₂ , C ₂ H ₆ N ₂								
9	C ₃ H ₈ N, C ₂ H ₈ NO, CH ₆ N ₃								
60	C_3H_8O , C_3H_5F , $C_2H_8N_2$, $C_2H_4O_2$, C_2H_5Si , C_2H_4S , C_2HCI , CH_4N_2O , COS								
31	C ₂ H ₇ NO, CH ₃ NO ₂ , CCIN								
32	C_3H_7F , C_2H_7P , $C_2H_6O_2$, C_2H_6S , C_2H_3GI								
64	$C_2H_2F_2$, C_2H_3FO , C_2H_3GI , SO_2								
66	C_5H_6 , $C_2H_4F_2$, CF_2O , F_2N_2								
57	C ₄ H ₆ N, CH ₃ F ₂ N, CIO ₂								
88	C ₄ H ₈ , C ₄ H ₄ O, C ₃ H ₄ N ₂ , C ₃ O ₂ , CH ₂ CIF								
9	C_4H_7N , C_3H_3NO , $C_2H_3N_3$								
0	G ₄ H ₁₀ , C ₄ H ₆ O, C ₃ H ₆ N ₂ , CH ₂ N ₄ , CHF ₃								
1	C_4H_9N , C_3H_9NO , F_3N								
2	C ₄ H ₈ O, C ₅ H ₁₇ , C ₃ H ₄ O ₂ , C ₄ H ₅ F								
73	CaH11N, CaH2NO, CaHaNS, CaH2Ns								

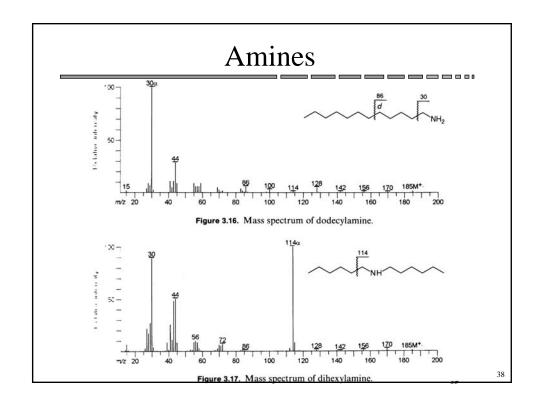

Example Mass Spectra

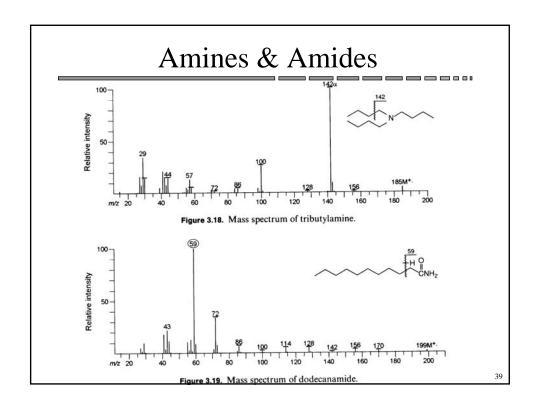

- Show trends
 - Look for similarities to unknowns
- Refer back as we discuss fragmentation mechanisms
- Key to the symbols:
 - (58) Important odd-electron ion
 - [61] Important peak formed by 2H rearrangement
 - Important odd-electron ion series
 - T Important even-electron ion series
 - σ Peak formed by sigma electron ionization
 - α Peak formed by alpha cleavage
 - i Peak formed by inductive cleavage

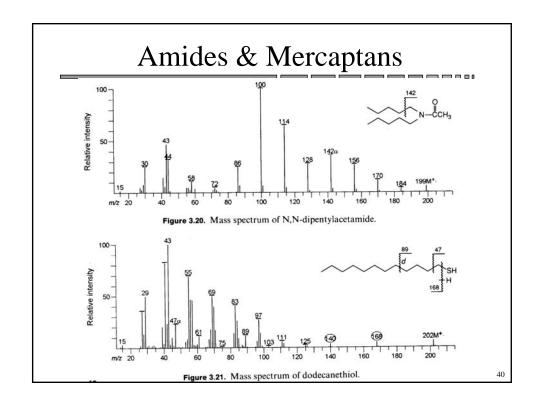


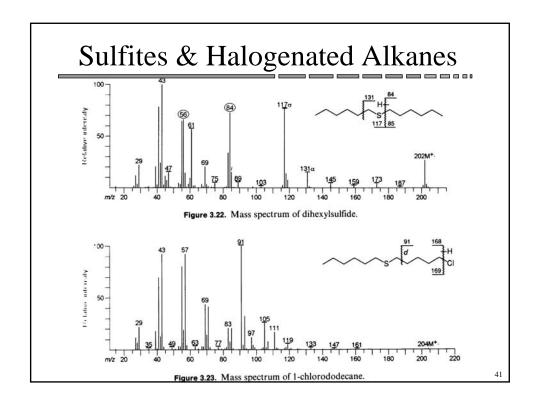

McLafferty Examples (not printed)

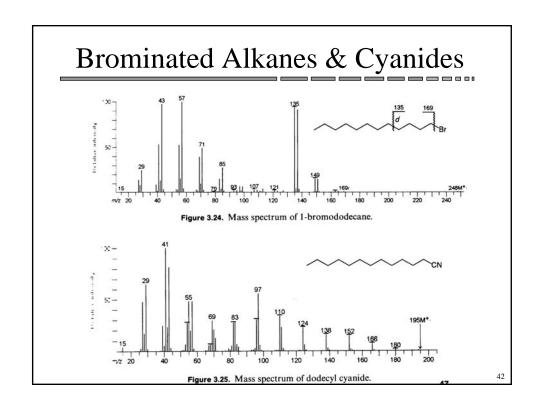


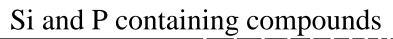












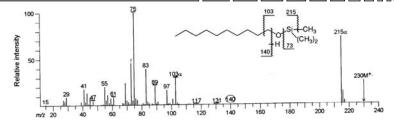


Figure 3.26. Mass spectrum of the trimethylsilyl derivative of decanol.

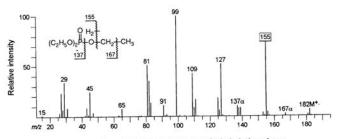


Figure 3.27. Mass spectrum of triethyl phosphate.