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We use results from positive matrix factorization (PMF)
analysis of 15 urban aerosol mass spectrometer (AMS) data
sets to derive simple methods for estimating major organic aerosol
(OA) component concentrations in real time. PMF analysis
extracts mass spectral (MS) profiles and mass concentrations
for key OA components such as hydrocarbon-like OA (HOA),
oxygenated OA (OOA), low-volatility OOA (LV-OOA), semivolatile
OOA (SV-OOA), and biomass burning OA (BBOA). The
variability in the component MS across all sites is characterized
and used to derive standard profiles for real-time estimation
of component concentrations. Two methods for obtaining first-
order estimates of the HOA and OOA mass concentrations
are evaluated. The first approach is the tracer m/z method, in
which the HOA and OOA concentrations are estimated from
m/z 57 and m/z 44 as follows: HOA ∼ 13.4 × (C57 - 0.1 × C44)
and OOA ∼ 6.6 × C44, where Ci is the equivalent mass
concentration of tracer ion m/z i. The second approach uses
a chemical mass balance (CMB) method in which standard HOA
and OOA profiles are used as a priori information for calculating
their mass concentrations. The HOA and OOA mass
concentrations obtained from the first-order estimates are
evaluated by comparing with the corresponding PMF results
for each site. Both methods reproduce the HOA and OOA
concentrations to within ∼30% of the results from detailed PMF
analysis at most sites, with the CMB method being slightly
better. For hybrid CMB methods, we find that fixing the LV-
OOA spectrum and not constraining the other spectra produces
the best results.

1. Introduction

Organic aerosols (OA) constitute a significant fraction of
submicrometer aerosols (1) and have important impacts on
health, visibility, and climate. Recently, factor analysis of

aerosol mass spectrometer (AMS) data has been used to
chemically characterize the sources and evolution of OA at
many worldwide sites (1-3). The AMS quantitatively mea-
sures and chemically characterizes nonrefractory submi-
crometer organic aerosols. The OA at most sites can be
separated into two main components: hydrocarbon-like OA
(HOA) and oxygenated OA (OOA) (1). In some sites, biomass
burning OA (BBOA) and other local primary OA (POA) can
be important contributors to the observed OA loading as
well.

HOA components, which on average account for 36% of
the observed organic mass in urban sites, show good
correlations with primary tracers such as CO, EC, and NOx

(1, 4-6) and can be considered as surrogates for anthro-
pogenic combustion POA. OOA components, which on
average account for 64% of the organic mass in urban areas
and 95% of the organic mass in rural/remote regions, correlate
with secondary species such as O3, Ox () O3 + NO2), sulfate,
and/or nitrate and are considered as surrogates for secondary
OA (SOA) (1, 5-8). The OOA components can include SOA
from all sources, such as anthropogenic, biogenic, and
biomass burning. OOA can also include gas-phase oxidation
products of SVOCs (semivolatile organic compounds) that
volatilize from POA and oxidize in the gas phase as well as
heterogeneous oxidation products of POA. The OOA com-
ponent is further resolved into two subtypes that differ in
the degree of oxidation and volatility (2, 3): low-volatility
OOA (LV-OOA) and semivolatile OOA (SV-OOA). Previous
work has shown that the simplification of the chemical
composition information provided by the AMS organic
components can provide key insight necessary for under-
standing and modeling the evolution of OA in the atmosphere
(1-3).

The main goal of this work is to obtain standardized
descriptions of the HOA and OOA component mass spectral
(MS) profiles and simple and general parametrizations that
can be used for real-time estimation of component con-
centrations across a wide range of locations. Standard MS
profiles can also be used to provide a priori constraints on
component source profiles in hybrid source apportionment
models (5). Individual HOA and OOA component mass
spectra and tracer scaling relationships have been previously
reported for individual sites (9, 10), but the degree of
variability in the spectral properties of these components
across locations has not been characterized. Thus, in this
work the OA components obtained across 15 urban data sets
are compared with each other and are used to obtain the
standard profiles and tracer scaling relationships. We focus
on comparing urban sites because these sites always have
contributions from both HOA and OOA components as well
as better contrast between their time series which allow for
more precise determination of the contributions and MS
profiles. Remote sites are often almost completely dominated
by OOA and have less time-series contrast and thus are less
useful to derive a standard HOA profile.

This manuscript is divided into two parts. First, positive
matrix factorization (PMF) analysis results for the urban data
sets are described and used to obtain standard MS profiles
for HOA, OOA, LV-OOA, SV-OOA, and BBOA components.
The standard component profiles are characterized by
comparison with reference mass spectra. In the second part
of the paper, two real-time methods for estimating HOA and
OOA component mass concentrations are evaluated: the
tracer m/z method and the chemical mass balance (CMB)
(11) based method. Methods for real-time reporting and
estimating OA component concentrations are of particular
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importance for long-term, remote applications of the AMS,
and for aerosol monitoring instruments such as the newly
developed Aerodyne aerosol chemical speciation monitor
(ACSM) (12).

2. Base Case: Positive Matrix Factorization (PMF)
Analysis
In this section we use PMF analysis to extract OA components
from all data sets. The site-to-site variability in the key mass
spectral features of the PMF component spectra is charac-
terized, and individual component spectra are averaged
across the multiple data sets to obtain standard HOA, OOA,
LV-OOA, SV-OOA, and BBOA component profiles. The OA
component mass concentrations obtained from the PMF
analysis for each site are then used as the base case against
which simpler methods (Section 3: tracer m/z method and
CMB method) are evaluated. The PMF results represent a
useful base case because they are obtained without any a
priori constraints on the OA component profiles.

2.1. Method. Detailed descriptions of the PMF analyses
for five of the data sets used here (Beijing, Riverside, Mexico
City, Pittsburgh, and Zurich) are available in previous
publications (5, 6, 10, 13, 14). As part of this work, PMF
analyses were performed on each of the remaining data sets
(Tokyo summer and winter, Houston, New York City summer
and winter, Vancouver, Manchester summer and winter,
Mainz, and Edinburgh). These data sets have been analyzed
previously with multiple component analysis (MCA) (1);
however, reanalysis using PMF in this work allows for further
deconvolution of the total OOA component reported by
Zhang et al. (1) into LV-OOA and SV-OOA components. All
PMF analyses are based on unit mass resolution (UMR) data.

PMF is a multivariate factor analysis technique developed
by Paatero et al. (15) to solve the mass conservation problem
of pollutant species with the bilinear factor model:

where i and j refer to row and column indices in the matrix,
respectively, and p is the number of factors in the solution.
For AMS data, xij are the measured concentrations of m/z j
in time-step i, reconstructed by p factors having constant
source profiles (fpj, factor MS) with varying contributions
over the time period of the data set (gip, factor time series),
without any a priori assumptions for either MS or time
profiles. eij are the residuals not fit by the model. PMF
computes the solution by minimizing the summed least-
squares errors of the fit, weighted with the error estimates
of each data point. Solutions are also constrained to have
non-negative values. The PMF2 executable version 4.2 is used
in robust mode together with a custom software tool for
solution comparison and analysis (PMF Evaluation Tool, PET)
(6). The analysis and input error matrix calculations are
performed following the procedures described in (6). Further
details are also included in the Supporting Information.

2.2. Standard MS Profiles of OA Components. PMF
analysis allows for the separation of the OA at all urban sites
into HOA and OOA, and sometimes other factors. The mass
fractions of the components at each site are shown in Figure
S1 (Supporting Information). Overall, OA at most sites are
dominated by the OOA component(s); in Beijing, Tokyo
(summer), Pittsburgh, Riverside, New York City (summer)
and Zurich, the OOA component can be further resolved
into LV-OOA and SV-OOA. In addition, a biomass burning
factor (BBOA) is also identified in the Mexico City and
Houston data sets. Other site-specific local OA factors are
also found in some of the data sets.

While they are qualitatively similar, the mass spectra for
each of the components display site-to-site variability. The

“standard profile” for each of the component, which is
obtained by averaging together the component mass spectra
from all sites, is shown in Figure 1 and tabulated in Table S1
(Supporting Information). The error bars in Figure 1 are the
standard deviations in the average “standard profile” intensity
at each m/z. The standard HOA profile is distinguished and
dominated by alkyl fragment signatures. The CnH2n+1

+ ion
series (m/z 29, 43, 57, 71, 85, 99...) accounts for 27% of the
HOA signal and the CnH2n-1

+ (m/z 27, 41, 55, 69, 83, 97...) ion
series accounts for 28%. The key feature of all OOA
components is the presence of a prominent m/z 44 (CO2

+)
peak. The standard OOA, LV-OOA, and SV-OOA profiles have
average f44 (ratio of m/z 44 to total signal in the component
MS, same notation used for other m/z below) of 0.14, 0.16,
and 0.05, respectively. For comparison, HOA has an average
f44 of 0.01. LV-OOA has higher f44 and thus is more oxidized
(i.e., has higher estimated O:C) than SV-OOA. Previous
characterization of worldwide OOA components has shown
a wide range of O:C for both SV-OOA and LV-OOA that
converges to highly oxidized LV-OOA with photochemical
aging (2, 3, 16). The standard total OOA and LV-OOA profiles
(obtained from sites with one or two subtypes of OOA,
respectively) are very similar to each other (R2 ) 0.99) while
the standard total OOA and SV-OOA profiles are more
different (R2 ) 0.66), suggesting that at the sites where only
total OOA is identified this component is dominated by aged
regional SOA with relatively little fresh SOA contribution.

Only in two of the sites (Mexico City and Houston) was
BBOA identified explicitly as an OA component. Thus, the
standard BBOA profile may not fully represent the variability
that can be observed in BBOA impacting urban sites. The
majority of the ions in the standard BBOA profile are similar
to those found in both the standard HOA and OOA profiles.
The distinguishing feature of the BBOA spectrum is the
presence of ion signals at m/z 60 (C2H4O2

+) and 73 (C3H5O2
+),

which are known to be produced by levoglucosan, a tracer
of biomass burning and related species (17). It is noted that
the f44 of the BBOA component (0.03) is higher than that in

xij ) ∑
p

gip fpj + eij (1)

FIGURE 1. Standard mass spectral profiles for HOA, OOA,
LV-OOA, SV-OOA, and BBOA components. The error bars
represent the variability in each m/z fraction (std dev) across
all data sets (n ) number of sites included in the averaging).
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the HOA component (0.01), indicating that the BBOA
component has higher O:C than HOA, consistent with direct
measurements (10).

As mentioned earlier, HOA is a surrogate of OA produced
from various anthropogenic combustion POA sources, and
OOA is a surrogate of SOA produced from multiple sources.
Since the standard profiles are obtained as an average from
sites with different primary and secondary source influences,
the generality of the standard profile is evaluated by
comparing with several types of reference MS from primary
and secondary sources (AMS mass spectra database: http://
cires.colorado.edu/jimenez-group/AMSsd/). The data in-
cludedirectsourcemeasurements(primaryreferences)(18,19)
and ambient measurements over well-defined periods
characteristic of mixed-source or biogenic-dominated SOA
(20, 21). The standard HOA profile has higher similarity (R2

)0.85-0.99) to anthropogenic combustion POA sources such
as lubricating oil, diesel exhaust, diesel fuel, and cooking
aerosols, with a substantially lower correlation with other
POA sources such as reference BBOA (R2 ) 0.33-0.70) and
even lower for reference SOA (R2 ) 0.06-0.26). This indicates
that the standard HOA profile is representative of nonbiomass
burning related mixed anthropogenic POA in ambient
environments. Component mass concentrations estimated
from the standard HOA profile could, for example, be used
to quantify and map the evolution of vehicular source PM
as it is diluted and processed after emission into ambient
environments (22). The standard LV-OOA and total OOA
profiles correlate better with SOA MS (R2 ) 0.90-0.98) than
all combustion POA reference MS (R2 ) 0.08-0.53) or
reference BBOA MS (R2 ) 0.28-0.86). This indicates that
standard OOA and LV-OOA profiles will be useful for
apportionment of SOA, especially for environments/time
periods which are not affected by more oxidized BBOA. The
fact that the standard LV-OOA and OOA profiles display the
same degree of correlation with the biogenically and an-
thropogenically influenced reference SOA MS indicates that
they do not distinguish between these specific sources of
SOA.

The standard BBOA profile correlates the best with
reference BBOA spectra (R2 ) 0.57-0.91), and less well with
HOA and SOA references. The standard SV-OOA profile has
similar correlation coefficients with most of the reference
spectra, although the best correlation is with the fresher
biogenic SOA MS. This reflects the fact that in general the
SV-OOA components have both OOA and HOA-type features
and higher spectral variability. Taken together these results
indicate that source apportionment analyses based on fixed
standard MS profiles for SV-OOA and BBOA may be
ambiguous and may require further constraints of source
profiles or full PMF analysis.

2.3. Ratios of OA Components to External Tracers.
Component time trends and correlations with external tracers
provide essential information for relating OA components
to their sources. The slopes obtained when comparing time
trends of the individual components and some of the key
tracers (CO, nitrate, and sulfate) are shown in Table S2
(Supporting Information). CO, which is a tracer of combus-
tion, correlates well with HOA. Aerosol nitrate and sulfate,
on the other hand, are tracers of secondary aerosol formation
and tend to correlate with more volatile and less volatile SOA
components, respectively (2, 5, 6). We compile together a
range of “OA component to tracer” ratios. For the sites
included in this study, the ranges for the HOA/∆CO, LV-
OOA/sulfate, and SV-OOA/nitrate ratios are 2.4-9.1 µg/m3/
ppm, 0.27-0.57, and 0.10-1.42, respectively. In general, the
LV-OOA components correlate better with sulfate, and the
SV-OOA components correlate better with nitrate (Figure
S3a, Supporting Information), consistent with previous
studies (2, 5, 6). This behavior is consistent with the

assignment of SV-OOA components as fresher and semi-
volatile and LV-OOA components as aged and of low volatility.
Figure S3b shows further evidence for the aerosol loading-
dependent partitioning of OOA (total OOA) in ambient aerosol
(3). The data points correspond to periods when partitioning
of semivolatiles is expected (i.e., in the mornings when the
temperature is lower and there is a larger change in
temperature). Taken together, the data show a general
decrease in f44 with increasing organics loadings. This
behavior is consistent with the partitioning of semivolatiles
(23, 24).

2.4. Spectral Variability of AMS Tracer Ions. Tracer ions
are distinctive ion fragments in each OA component whose
signal level correlates strongly with the total concentration
of that component and thus can be used to approximate OA
component concentrations even if they account for only a
small fraction of that component’s total mass (9, 10). Figure
2 shows the relative MS intensity and variability of potential
tracer fragments (m/z with typically high signal levels in some
OA spectra: 27, 29, 43, 44, 55, 57, 60, 73, 77, 91) in standard
profiles and reference spectra. Figure 2 confirms that the
most unambiguous tracer for OOA components and sec-
ondary aerosol is m/z 44, due to the combination of high f44

values in OOA and SOA (average value ) 0.13 and 0.14,
respectively) and low values for most POA sources. Although
m/z 57 is present in many of the components, it is much
higher in the HOA components and combustion POA
reference MS; the average value of f57 in the HOA and POA
reference spectra are 0.07 and 0.08. The much lower values
of f57 in OOA, SOA (∼0.01), and BBOA (∼0.03) make it the
most distinctive HOA tracer. f55 shows a similar pattern to
f57 but the contrast between POA and the other sources is
smaller and thus is not as good of an HOA tracer. However,
f55 appears to be enhanced in cooking aerosol (14, 25) and
so it may be a useful tracer for that source. BBOA components
and BBOA reference spectra show very elevated f60 and f73

when compared to the other sources/components. There is
substantial variability in f60 and f73 of the BBOA reference
spectra used here, which contrasts with the remarkably
constant values of f60 reported by Lee et al. (17) who examined
a wider range of biomasses. Given these conflicting results,
caution is recommended when using the tracer approach to
estimate BBOA.

Previous studies have suggested that mass spectral
fragments 27 (C2H3

+) and 29 (C2H5
+) may be tracers of

biogenic SOA (18). m/z 29 is also often an intense fragment
in BBOA. The average f27 values are similar across all the
components and reference spectra, indicating that it is not
a useful tracer for any particular OA component. f29 in BBOA
is larger than in HOA but is similar to OOA values, which
limits its value as a tracer. Due to contributions from both
oxygenated and reduced ions to m/z 43 (C3H7

+ and C2H3O+),
f43 has about the most constant values across all OA
components, and thus it is rather a useful tracer of total OA
(25). The mass fragments m/z 77 (C6H5

+) and 91 (C7H7
+) can

arise from fragmentation of aromatic compounds (26) but
can also arise in R-pinene SOA (27). Neither f77 nor f91 shows
a distinctive pattern across the components or reference
spectra, limiting their usefulness as tracers.

3. Real-Time Estimates of OA Component
Concentrations
3.1. Tracer m/z Method. In this method, linear combinations
of tracer ion fragments are used to estimate OA component
concentrations. As shown above, m/z 44, m/z 57, and m/z
60 are distinctive tracers for OOA, HOA, and BBOA, respec-
tively. Here we use the urban site data to determine the tracer
scaling factors for reproducing the HOA and OOA concen-
trations (results from PMF analysis) from these ions. Since
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BBOA was only identified in two studies, we do not pursue
its estimation further.

For each site, a tracer scaling factor is obtained as the
slope of the fit between the PMF time series of the component
and the time series (i.e., equivalent mass concentration) of
its tracer ion i (Ci). For this analysis, total OOA is estimated
from C44. High resolution spectral analysis by Aiken et al.
(10) has shown that the m/z 57 ion fragment is dominated
by a reduced ion (C4H9

+) from HOA but also can contain
non-negligible contribution from an oxygenated fragment
(C3H5O+) of OOA. Aiken et al. (10) proposed to estimate HOA
and OOA based on:

The last term in eq 2 accounts for the contribution of OOA
to m/z 57 and thus a is the ratio of m/z 57 to m/z 44 in the
OOA component spectrum for that site. Aiken et al. (10)
determined that a ) 0.1 based on HR component spectra
and that b, c, d (for Mexico City data) are 16, 9, and -5.3
µg/m3, respectively. The values of a for the OOA components
in this study are also found to be around 0.1 for most sites,
and the values of d are <0.3 µg/m3 for all sites (Beijing has
a value of 0.78 µg/m3 and is treated as an outlier). The values
and fitting errors of a, b, c, and d for each site can be found
in Table S3 (Supporting Information). The fitting errors in
the parameters are generally much smaller for individual
sites than the variation in these parameters between sites.

Figure 3a and 3b shows the values of b and c calculated
from eq 2 and eq 3 for the HOA and OOA components at
each site. For HOA, b ) 13.4 ( 3.3 (range 8.5-19.2). The
Beijing data is regarded as an outlier and excluded when
calculating the average value. The variability in the observed
scaling factors may be related to different mixtures of primary

combustion and other reduced OA sources in the different
sites. The scaling factors for HOA reference MS (those shown
in Figure S2, Supporting Information) are also shown in Figure

FIGURE 2. Average value and variability of relative intensities of important mass fragments (m/z 27, 29, 43, 44, 55, 57, 60, 73, 77, 91) in
OA component spectra at each site, as well as for reference MS.

HOAest ) bx(C57 - axC44) (2)

OOAest ) cxC44 + d (3)

FIGURE 3. Tracer scaling factors for (a) HOA and (b) OOA at
each site. The black solid line shows the average values from
all sites. The black dashed lines show the estimated scaling
factors for the reference mass spectra. “S” and “W” denote
“summer” and “winter”, respectively.
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3a (calculated simply as 1/f57 since the contribution of the
secondary oxygenated ions to m/z 57 is negligible). The
reference MS scaling factors span the same range of the HOA
components observed. The tracer scaling factor of the Beijing
data set is close to those of the reference cooking MS,
consistent with the fact that there are large contributions
from cooking POA in the Beijing data set (14). However,
currently, we do not have sufficient information to suggest
a one-to-one correspondence between scaling factor values
and source dominance. The source dependence of the HOA
tracer scaling factors should be studied further in the future
when more data sets are available, especially high-resolution
data sets. For OOA, c ) 6.6 ( 1.9 (range 2.9-9.0). Also shown
in Figure 3b are the values of c for OOA reference MS
() 1/f44). The LV- and SV-OOA ranges are from Ng et al. (3),
which also included PMF analysis at rural and remote sites
which are typically dominated by OOA.

The accuracy of tracer scaling relationships in predicting
component concentrations is evaluated by calculating the
concentrations of HOA and OOA components from the
average values of the scaling factors determined above (with
b ) 13.4, a ) 0.1, c ) 6.6, and d ) 0) and comparing them
with the concentrations determined from PMF analysis. As
shown in Figure 4a, these average tracer scaling factors
provide estimations of average OA component concentrations
that are within ∼30% of the PMF results for most sites. The
tracer-based estimations also provide useful time trends of
the components at all sites, as shown in Figure 4c for the
New York City-winter data set. The R2 of the tracer-estimated
and PMF time series ranges from 0.67 to 0.97.

3.2. Chemical Mass Balance (CMB) Method. The math-
ematical model of CMB, which is the same eq 1 as shown
above for PMF, expresses mass conservation in terms of
pollutant sources with constant composition profiles. The
key difference is that in CMB the source profiles (component
MS) are prescribed before the analysis, rather than derived
from the data matrix as in PMF. CMB can be applied for
real-time estimation of OA component concentrations, by
expressing the observed mass spectrum at each time step as
a linear combination of standard component MS and finding
the component contributions that minimize the differences
between the total measured and reconstructed MS. A linear
least-squares fitting procedure (from Igor Pro 6.12A, Wave-
Metrics Inc.) is used to fit each time step separately. CMB
has not been applied previously to AMS data to our
knowledge.

In this work, the standard profiles obtained above are
used as fixed source profiles for all data sets. Three different
combinations of the standard profiles are evaluated: (1) HOA
and OOA. (2) HOA and LV-OOA. The residual of the fit is
regarded as SV-OOA for sites with such a component. (3)
HOA, LV-OOA, and SV-OOA. CMB analysis with the standard
HOA and OOA profiles as inputs results in a better estimation
of the total OA concentration compared to the other two
combinations. For sites with both LV-OOA and SV-OOA
components, the times series of the SV-OOA component is
not well-retrieved using the latter two combinations men-
tioned above. This is consistent with the higher variability
of the SV-OOA component spectra across sites. As seen in
Figure 4b, the concentrations estimated from the first

FIGURE 4. Estimated (a) HOA and (b) OOA concentrations from the tracer m/z and CMB methods vs the results of PMF analysis. Solid
line is the 1:1 line, dotted lines are (30% from the 1:1 line. (c) Time series of HOA and OOA from the New York City winter data set
determined from PMF analysis and estimated from the tracer m/z and CMB methods.
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combination agree within ∼30% with the PMF results. The
estimated component time series also follow the PMF trends
fairly well (Figure 4c). The R2 of the CMB-estimated and PMF
time series is >0.90 for almost all sites.

The sensitivity of the analysis to variations in the source
profiles is explored with randomly generated HOA and OOA
component spectral profiles. The New York City-summer
data set is used as a case study for these calculations. In the
first scenario, the standard HOA profile and a randomly
generated OOA MS profile are used as CMB inputs. For the
randomly generated OOA MS, the intensity at each m/z is
allowed to vary within the appropriate standard deviation
for that m/z in the standard OOA MS profile. Fits are
performed separately for 150 different OOA MS profiles. In
the second scenario, the standard OOA profile and 150
randomly generated HOA MS profiles (allowing each m/z to
vary within the standard deviation of the standard HOA MS)
are used as inputs. These simulations show that mass spectra
within the standard deviations of the standard profiles still
reproduce the HOA and OOA concentrations to within ∼30%
of those obtained from PMF analysis. Results from these
simulations are shown in Figure S3.

While the discussion above has focused on real-time
estimates, the standard spectra can also be used for post-
processing with hybrid factor analysis. These methods
incorporate aspects of both PMF and CMB: they involve
solving eq 1 by fitting the whole data matrix (i.e., a compilation
of mass spectra at all times) simultaneously while imposing
some partial constraints on the MS of some components. In
this work, the hybrid CMB modeling was performed using
the Multilinear Engine (ME2) tool (4) as described in Lanz
et al. (5). In this hybrid CMB model analyses, eq 1 is expressed
in terms of HOA, LV-OOA, and SV-OOA components, and
simple constraints on the component MS are tested. Table
S4 (Supporting Information) shows results from (1) fixing all
three component MS to their standard profiles and (2) fixing
only HOA or only LV-OOA MS to their standard profiles while
allowing the other two-component MS to vary from starting
values corresponding to their standard profiles. For the first
case, the component concentrations are reproduced to within
30% of the detailed PMF analysis. For the second case, the
total OOA and HOA mass concentrations are best reproduced
when the LV-OOA component MS rather than the HOA
component MS is fixed to the standard profile values. When
only the LV-OOA component MS is fixed to its standard profile
values, however, the relative split between LV-OOA and SV-
OOA is not well reproduced. More data sets need to be
analyzed to evaluate the use of the standard profiles in these
analyses.
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