SPRING 2018-PHYSICS AND CHEMISTRY OF THE SOLID EARTH, GEOL 5001

CLASS TIME AND PLACE: MWF 9AM-9:50AM, BESC 265

INSTRUCTORS:

Craig Jones: Phone 303-492-6994, email: cjones@colorado.edu

Lang Farmer: e-mail: farmer@colorado.edu

OFFICE HOURS: Farmer; MW 10-11 AM, Benson Earth Sciences Building Room 422A Jones MW 1-2 pm BESC 440C

COURSE REQUIREMENTS: (basic chemistry and physics)

GRADING: Based upon a combination of four homeworks (40%), one midterm exam (25%), and final exam (25%) scores, as well as class participation (10%).

IMPORTANT DATES:

24 January is add day

31 January is drop day (no charge)

5 March midterm

23 March is last day to drop (in CUinfo)

26-30 March is spring break

Final: Currently scheduled for Saturday May 5, 4:30-7:00 pm

TEXTBOOK: Anderson, New Theory of the Earth (2007), required

Supplemental: Karato, The Dynamic Structure of the Deep Earth, is useful for first part of course Others: Turcotte and Schubert, Geodynamics, is helpful for material in the latter part of the course. Brown and Mussett, The Inaccessible Earth, 2nd edition (1993) is out of print but will be used for some readings.

Stüwe, *Geodynamics of the Lithosphere: An Introduction* (2007) might be used for some readings. Another good reference for geochemistry portion of class is White, Geochemistry (2013) All texts should be on reserve in the Earth Sciences Library; Electronic versions of <u>Brown and Mussett</u> and <u>Stüwe</u> are available through the library.

STANDARD CAMPUS STATEMENTS ON ACCOMMODATIONS, BEHAVIOR, ETC can be found at https://www.colorado.edu/academicaffairs/policies-customs-guidelines/required-syllabus-statements>.

SYLLABUS/READING LIST:

(subject to change)

Week 1: Jan. 17-19

17- Introduction-Why study solid Earth chemistry? Starting points; nucleosynthesis, solar system formation, layered nature of solid Earth, and chemical classification(s) of matter (FARMER) Reading- Anderson, Ch. 1-3

19- How to determine the "bulk" composition of whole Earth. "Volatility" classification of elements (FARMER)

Week 2: Jan. 22-26

22- Introduction to isotope geology, and application to determining when Earth's core formed (FARMER)

Reading-Halliday, A. N., 2000, Space Science Reviews, 92, p. 355-370.

24- Core (physics-JONES): Seismological and other geophysical constraints, the geodynamo. Reading- Anderson, Ch. 10, 26 pp. 344-5 (Karato Ch. 6)

26- Stress and strain (JONES) Handout

Week 3: Jan. 29-Feb. 2

29- Convection in the mantle (JONES)

31- Seismological layering of the mantle (JONES)

Reading- handouts, Anderson Ch. 7, 9 (Karato, Ch. 4 (mainly) + some Ch. 1)

2- In class paper discussion (papers TBD)

Week 4: Feb. 5-9

5- Mineralogy of Earth's mantle. Classification of peridotites (partial mantle melting). Introduction to thermodynamics (FARMER)

Reading-Anderson, Ch. 8 pp. 102-108, Ch. 11 (as an overview for mantle variations), Ch. 22, Ch. 26 pp. 338-346.

- 7- Introduction to phase equilibria, Clapeyron slopes and phase transitions in deep mantle (FARMER)- **HOMEWORK** #1 due date Reading Anderson Ch. 14 esp. pp. 168-173, 187-188, Ch. 17, 26
- 9- In class exercise (flipped classroom)

Week 5: Feb. 12-16

- 12- Magma generation from mantle (heating vs decompression vs compositional changes). Thermodynamic considerations. Introduction to trace element geochemistry (FARMER)
- 14- Structure and origin of oceanic crust. Hydrothermal processes at mid-ocean ridges. The "depleted mantle" reservoir. (FARMER)

16- In class paper discussion Reading: Anderson, Ch. 4,22

Week 6: Feb. 19-23

19- Oceanic Lithosphere (Physical perspective-JONES)-thermal subsidence and heat flow

- 21- Forces driving and resisting plate motion (JONES)
- 23- Class research paper discussion Reading- Anderson, Ch. 4 pp. 35-40, 41-49, Ch. 7 78-80, Ch. 11 pp. 134-5, Ch. 26 pp. 333-338, 346-348, (Karato Ch. 2, 4), handouts

Week 7: Feb. 26-March 2

26- Convergent margin magmatic and slab dehydration processes (FARMER)

- 28- Slab dip, volcanic arcs and fate of slabs (JONES)-HOMEWORK #2 due date
- 2- In class paper discussion (+/- review)
 Reading- handouts, Anderson, Ch. 4 pp. 39-41, 4649, part of Ch. 14, 23?, (Ch. 22) (Karato, Chapt. 2,4)

Week 8: March 5-9 5- MIDTERM

- 7- Plumes (JONES) handout, Anderson Ch. 4 (pp. 49-57)
- 9- Plumes, ocean island basalts (intraplate magmatism) and mantle "reservoirs". (FARMER) Reading- handout, Anderson Ch. 4 (pp. 49-57), parts of Ch. 14 (review Ch. 4 Karato)

Week 9: March 12-16

- 12- Continental Lithosphere overview. Introduction to mineral based thermometry and barometry (FARMER)
- 14- Plate reconstructions, Tectosphere observations: Surface waves (JONES) **Anderson** , **Ch. 8**, **Ch. 11** pp. 124-137

16- In class exercise (flipped classroom)
Reading- Anderson, Ch. 8; Brown and Mussett,
Ch. 10 (Karato, Ch. 2)

Week 10: March 19-23

- 19- Continental Mantle Lithosphere. Chemical and petrologic perspective. Dynamic nature of mantle lithosphere and evidence for pervasive metasomatic activity. (FARMER)
- 21- Continental heat flow and elastic plate thicknesses (JONES)
- 23- In class paper discussion Reading- Handouts. Anderson, Ch. 26 Brown and Mussett, Chapt. 10&11.

Week 11: March 26-30 NO CLASS – SPRING BREAK

Week 12: Apr. 2-6

22- Origin of Continental Crust – Archean vs. Proterozoic vs. Phanerozoic (FARMER)

- 4- Strength of continental lithosphere (JONES) Reading- Stüwe, Ch. 5. HOMEWORK #3 due date.
- 6- In class paper discussion

Week 13: Apr. 9-13

- 9- Vertical compositional variations in continental crust. Lower vs. upper Crust (FARMER)
- 11- Crustal seismology+ Forces of continental deformation (JONES)
- 13- In class paper discussion Reading- Anderson, Ch. 8 pp. 89-100, Handouts

Week 14: Apr. 16-20

16- Magma production in continental lithospherebasalts. Large igneous provinces vs. distributed, small volume volcanic centers. Lithospheric deblobbing and "bakeout" magmatism. (FARMER)

18- Physics of magmatism/Extensional tectonics (JONES)

20- In class paper discussion

Reading- Handouts, Farmer chapter from Treatise on Geochemistry, parts of Turcotte and Schubert (9-11, 6-12, 6-2 to 6-6)

Week 15: Apr. 23-27

23- Magma production in continental lithosphereandesites and rhyolites. Introduction to crustal anatexis. (FARMER) 25- Physics of earthquakes (JONES)- **HOMEWORK** #4 due date.

27- In class paper discussion Reading- Handouts, part of Stein and Wysession

Week 16: Apr. 30-May 2

30- Magma Production in Continental Lithosphereorigin of granitic rocks (FARMER)

2-Review

Reading- Handouts

[Final: TBA]