
GEOL 5690: Dynamic Topography 
 
Defining dynamic topography 
 
In a sense, all topography is dynamic as it is always changing thanks to erosional and 
depositional processes as well as tectonic activity at greater depths. Thus the term “dynamic 
topography” can seem trite. Over the last 20-30 years or so, “dynamic topography” in a 
geodynamic sense has taken off as an explanation for long-wavelength variations in elevation 
and consequences of such changes. Unfortunately the term in this context has varied 
interpretations. For instance, the decline in seafloor elevation with time since creation at a mid-
ocean ridge is sometimes considered to be “dynamic topography,” while for others it is just 
isostatic and entirely a lithospheric process. Convective removal of dense lithosphere should 
produce an uplift; some would consider this dynamic topography and others would view it as 
being in isostatic equilibrium. 

For the discussion here, dynamic topographic effects are changes in elevation produced 
by the transmission of viscous stresses to the lithosphere. In this context, seafloor sinking with 
age and removal of mantle lithosphere are considered to be isostatic. Deflections of a continent 
because of flow induced by subduction would be dynamic. Note that some ambiguity exists in a 
subduction zone where the load of a slab is isostatic when connected to the overriding 
lithosphere and dynamic once viscous mantle material intercedes. A more nuanced and complete 
discussion can be found in Molnar et al. (2015). 
 
Slab dip and topography 
 
Sections 6-7 to 6-9 of Turcotte and Schubert lay out the background, section 6-11 has the payoff. 
 
A puzzle that challenged early models of subduction was that the dip of slabs as observed in the 
Earth is not 90°.  Slabs dip as low as 5° up to about 70° or so.  While there is some influence 
from the thermal structure of the slab, one key element is the recognition that pressures from 
fluid flow are critical.  This is also important as these fluid motions are being driven by the 
motion of the slab and so absorb a lot of the slab pull force. We first note that motion of a 
viscous fluid can be solved with the aid of a stream function y 

  (1) 

where the velocities in the fluid are related to the stream function thus: 

  (2) 

For this problem, we posit a stream function of this form: 
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  (3) 

This can be verified as a solution following eqns. 6-108 and 6-109 in Turcotte and Schubert.  
Substitution into the equations for velocity yield 

  (4) 

The pressure can be found by using one of these equations in our force balance equations 

  (5) 

and find 

  (6) 

We then have to apply continuity boundary conditions: no velocity along the base of the 
overriding plate and velocity equal to that of the descending slab along its top (along a line of 
constant arctan).  This is done for a 45° dipping slab in Turcotte and Schubert with the result that 

  (7) 

where r is measured down along the slab top and U is the velocity of the slab.  Because the force 
decreases exactly with distance, the moment per unit length of slab remains the same.  A similar 
analysis on the bottom of the slab reveals a comparable force also pointing upwards with 
magnitude only about 5% of the inside corner flow (0.462 vs. 8.558). In this formulation, the 
torque applied by these dynamic pressures balances the torque from the slab trying to pivot 
downward from the trench.  

The dynamic pressure along the base of the overriding plate also falls out:  

  (8) 

If we balance the pressure by depressing the surface, this would be the dynamic topography 
associated with the subducting slab. This solution has the unhappy property of being infinite near 
the corner of flow. Note too that this is assuming a constant viscosity.  Presence of a low-
viscosity channel (crust or asthenosphere) will tend to drive flow in the channel towards the slab 
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and reduce the pressure on the base of the plate. In general, both pressures will increase as the 
slab dip shallows.  
 (This same physics can apply to the evolution of a subduction channel if wedge shaped; 
see Moulas et al., 2021 for how this handcuffs some models of flow into a subduction zone). 
 The alternative means of modelling this is simply to assume that the slab is falling into 
the mantle and the overriding plate is moving to keep up (see below); often these solutions are 
kinematically imposed and the far-field boundary conditions are a challenge. This is in a sense 
the approach in Mitrovica et al. (1989) and seems to be the basis for the “tomotectonics” of 
Clennett et al. (2020), which was challenged as not physically consistent with broader mantle 
flows by Li et al. (2023). Thus dynamic stresses from such models should be treated with care. 

Although this analytic solution has long been popular and gives us some useful insight 
into the problem, a recent unpublished analysis comparing these predictions against modern 
numerical models of subduction suggests that ignoring the internal deformation of the slab 
results in noticeable discrepancies between the numerical models and the analytical solution.  
The singularity in the corner where the slab and overriding plate and asthenosphere meet is 
another limitation. Other issues arise with the development of torques at major phase transitions 
(basalt/eclogite, olivine a-b-g transitions). So these equations only give us some insight into the 
processes acting on slabs. 

 
Sinking or rising blobs 

A conceptually simpler case is if we have an isolated blob of material rising or sinking in 
a viscous medium. The movement of the blob will induce movement of the fluid, which will 
include a change in the topography at the surface of the medium. This was investigated by 
Morgan (1965) and modified some by Chatelain et al. (1992); we’ll follow the development in 
the appendix of Molnar et al. (2015) that follows. 

The analysis presented here both extends the solution that Morgan [1965] gave for surface 
deflection and gravity anomalies to include terms that he discarded, those accurate to terms in 

 in Taylor expansions (see figure for a definition of terms), and also considers a viscous or 
inviscid sphere, in addition to his treatment for a rigid sphere.   
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First, a sphere rising through a viscous fluid of infinite extent can be written as  

  (9) 

where  

  (10) 

and  is the viscosity of the sphere [Batchelor, 1967, p. 236].  Clearly, when the sphere is 
rigid, , f = 3/2, and (9) reduces to the usual Stokes-flow result with a 1/3f = 2/9.  In 
spherical coordinates with the center of the sphere defining the origin, the components of 
velocity of the fluid surrounding the sphere, which is at rest at infinite distance are: 

  (11) 

  (12) 

[e.g., Griffiths, 1986]. 
Morgan [1965] showed that the influence of a surface at which the vertical component of 

velocity must vanish introduces a factor that reduces the speed of the sphere within the fluid, 
which we write here as  

  (13) 
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We need boundary conditions on the surface, which we express in cylindrical coordinates, 
where r is the radial distance from an origin centered over the center of the sphere, D is its depth, 
and .  With these coordinates, , and .  From (11) and (12), 
we obtain  

  (14) 

This twice what we would infer from (11) and (12), but Morgan’s solution exploits images.  
Hence, there are effectively two spheres, one on either side of the boundary.   

To calculate the deflection of the surface, we must estimate the vertical normal stress on the 
surface, which consists of a perturbation to the pressure due to the flow and the vertical normal 
deviatoric stress. 

  (15) 

He showed that the perturbation pressure surrounding the sphere is  

  (16) 

We use incompressibility to estimate the vertical normal deviatoric stress: 

  (17) 

This leads to: 

  (18) 

So, the total normal stress becomes: 

  (19) 

The surface uplift, in turn becomes: 
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  (20) 

where ∆ρ is the density contrast of the topography (here taken to be the top of the mantle relative 
to air, so 3300 kg m-3). This is plotted below for a rigid sphere, f = 3/2, in panel (a) for three 
different geometries.  In his simpler solution, equation (15) of Morgan [1965], the first term 
vanishes because f = 3/2, and he included only the third of the four terms in (20). 

We might consider the value of uplift (or subsidence) directly above the sphere (r=0) by 
setting R=D: 

  (20a) 

When a is noticeably smaller than D, we can see that the amplitude really depends on the 
lefthand term; reducing to Morgan’s (1965) solution by assuming a solid sphere (f = 3/2) whose 
radius is sufficiently smaller than the sphere’s depth yields 

  (20b) 

where M is the total mass surplus or deficit of the sphere relative to the surrounding material. 
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Figure A5 from Molnar et al. (2015). 
(a) Surface height (km), (b) free-air 
gravity anomaly (mGal), and (c) ratio 
of free-air gravity anomaly to surface 
height (mGal/km) versus distance from 
the point directly over the center of the 
rising sphere (Figure A4) for three 
cases: a sphere of radius 500 km and 
centered at depths of 1000 (red) and 
2000 km (blue), and a sphere of radius 
1000 km centered at a depth of 2000 
km (black). The density of the sphere 
is chosen so that the deflection directly 
over the sphere is 1 km. Not 
surprisingly, when the sphere is small 
in radius (500 km) and shallow (1000 
km) in depth (red), the deflection is 
more localized than when it is deep.  
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Basically, in this formulation, the deflection is mainly due to the mass involved and it 

decreases with the square of the depth. A line load (more like a slab) would tend to decrease 
more slowly with depth. If we imagine a dipping slab as a series of blobs descending at different 
depths, we can see how shallowing a slab’s dip will cause subsidence to move inland as the blob 
under a given part of the foreland becomes more shallow.  In a sense, this approach was used by 
Mitrovica et al. (1989) to argue for a dynamic origin to subsidence producing the Interior 
Seaway that linked the Gulf of Mexico with the Arctic Ocean: 

 

 
The figure superimposes the temperature field (and thus density variations) from three 

sinking blobs offset horizontally to make a ~45° “slab”. 
However, one certain complication is that the Earth’s viscosity is not constant. So while 

the viscosity of the halfspace does not enter into the equations above, if there are variations, 
those variations will have an impact. Additionally, there are density discontinuities in the earth 
that can complicate the rise or descent of a density anomaly. So while these calculations give us 
a sense of the magnitude of possible deflections, more thorough analyses are needed to give 
quantitative estimates of dynamic topography. However, Morgan (1965) showed that even 
placing a relatively low viscosity layer above a stiffer layer tended to only reduce the surface 
deflections a small amount. More complex geometries (e.g., low viscosity in the counterflow 
above a subducting slab) can have more profound effects on dynamic topography. 

 
Gravity and dynamic topography. One of the points of disagreement about the amplitude 

of modern dynamic topography is whether other geophysical observations are consistent with 
claims from some models of as much as 2-3 km of dynamic topography. One such observable is 
free-air gravity anomalies (which we’ll discuss a bit more later in the class). 

The gravity anomaly produced by the simple sphere-in-a-uniform-halfspace consists of a part 
due to the surface deflection and that due to the mass of the sphere: 

  (21) 

Mitrovica et al ß Tilting of Continental Interiors by Subduction 1087 

Fig. 10. The thermal field produced by superimposing the t -- 0.0, 0.25, 0.50, 0.75, and 1.0 fields of the 
model of Figure 6 (At = 0.25, see text). Each field is horizontally shifted, with respect to the previous field, 
by an amount equal to the width of the initial block (116 km); only a portion of the cell is shown. The 
near-surface dip of the resulting subduction is approximately 45 ø. 

The lithospheric deflection induced by the field of Figure 
10 is shown in Figure 11. Also shown on the figure are the 
deflections associated with subduction with near-surface 
dips of 30 o and 60 o . The latter result from At values of 
0.12 and 0.33, respectively, corresponding to subduction 
velocities of about 2.0 and 0.75 cm/yr. It is clear from 
the figure that the asymmetry of the thermal fields is 
reflected in the horizontal scale of the deflection. One 
measure of this scale is the horizontal distance between 
the peak deflection and the point on the right for which 
the surface remains undeflected. This length, which we 
will call d•/, is a lower bound estimate on the horizontal 
scale of the deflection because it is influenced by mass 
conservation and therefore the aspect ratio of the box used 
for the calculation. An upper bound (denoted d• Ax) is 
the distance from the peak subsidence to the point where 
the tilt of the surface down to the subduction zone begins 
(the point of maximum uplift). The advantage of d• Ax 
is that it is less sensitive to the aspect ratio of the box 
and in practice assumes that the tilt is insensitive to the 
return flow of the convection. In Figure 8, for the initial 
field given in Figure 6a, ds is 250 km and ,aMAX is 390 '•H 

km. In contrast, for subduction zones of near-surface 
dip 60 ø, 45 ø, and 30 ø, the horizontal scale increases to 
approximately 425, 565, and 1000 km for d•/ and 950, 
1170, and 1710 km for d• Ax, respectively (Figure 11). 
Clearly, regardless of the measure used, the horizontal 
scale of the surface deflection is strongly dependent on the 
dip of the subduction zone. 

The same figure shows that the vertical scale is also 
sensitive to the dip angle, though to a lesser degree. A 
point to note in this context is that the deflection is 
calculated for the case of a continuous lithosphere. A 
"platform" lithosphere with a free end at the subduction 
zone would exhibit larger vertical deflection amplitudes. 

In the block model of subduction there are two other 
parameters which could have an effect on the horizontal 
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Fig. 11. The topographic profile corresponding to the field 
of Figure 10 (labeled a). Also shown are the deflections for 
the cases of near surface dips of 600 (At = 0.33, labeled b) 
and 300 (At = 0.12, labelled c). In all cases, D = 5 x 1023 
Nm. The arrow gives the position of the right boundary 
of Figure 10. 

scale of deflection: the assumed flexural rigidity of the 
overlying lithosphere and the initial temperature of the 
detached slab. Figure 12 gives the deflection calculated 
for the 450 model of Figure 10, with five different values of 
the flexural rigidity. As the flexural rigidity is increased, 
progressively lower wave-numbers are filtered from the 
profile, and this is manifested by smoother deflections and 
lower peak subsidence. Indeed, for a rigidity of 5 x 1025 
Nm the asymmetry of the profile has virtually disappeared, 
while the peak deflection has dropped to less than half 
of the value calculated for the case of no lithosphere. 
An important characteristic of the profiles is the relative 
constancy in the values of both d•/ and d• ax. For 
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Inserting (20) into (21) yields: 

   (22) 

 which is plotted in the figure panel (b), for f = 3/2. 
Finally, note that in the limit of  and at r = 0, 

  (23) 

For a rigid sphere, f = 3/2, this simplifies to   ∆"
#$
≈ %&'∆(

)
, or 92 mGal/km of elevation if the 

density contrast being lifted is the mantle at 3300 kg m-3. For an inviscid sphere (f = 1), (23) 
becomes , which is only 9.5% greater than the solid sphere case. 

In general, free-air gravity anomalies are not that large, and Molnar et al. (2015) argued 
that this placed an upper bound on modern dynamic topography of a few hundred meters. In this 
analysis, the anomaly from the causative mass is negative and it is the gravitational attraction of 
the uplifted surface, roughly a factor of three more than the sphere at depth, that dominates. In 
the plot below, for the case of a sphere of radius 500 km at a depth of 2000 km, the black line is 
the total free-air gravity anomaly and the red line is the contribution from a rising (low density) 
sphere driving the uplift. 
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What this suggests is that dynamic topography can hide if the deflection is somehow 

reduced relative to the value predicted from a uniform halfspace.  The most obvious solution 
would be a low-viscosity layer; however, Morgan’s (1965) analysis showed that it would have to 
be a very low viscosity layer. This is considered more fully in Molnar et al. (2015) as well as 
several other papers on dynamic topography. 
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