Potential Laramide/Oceanic Plateau Topics

1. The track of the oceanic plateau (“Shatsky Rise Conjugate™) is sufficiently well established that
meaningful tests can be made. [Basically, if we don’t know where it was and instead are using the geologic
changes in North America to plot its course, those geologic features cease to be useful as a test of the
hypothesis; we then have to distinguish the features used to set the track from whatever is left that might
test the idea].

2. Subduction of an oceanic plateau will cause surface uplift in the continent. [This is a subset of the
models out there] - Elize, (Shunjie)

3. Subduction of an oceanic plateau will lead to subsidence in the continental interior [Also a subset of
models]-Shunjie

4. Subduction of an oceanic plateau will usher in flat slab subduction

5. Subduction of the Shatsky Conjugate produced the Rand+/-Orocopia+/-Pelona schists in the Mojave
Desert

6. Timing of vertical changes in surface elevation (see points 2 and 3) is in agreement with geological
proxies such as changes in fluvial systems, major unconformities, etc.-Vanessa

7. The stress field induced by the Shatsky Conjugate is consistent with coeval deformation in North
America-Stephen

8. Subduction of the Shatsky Conjugate has left fragments in coastal accretionary complexes

9. Magmatism patterns are consistent with the history of subduction of the Shatsky Conjugate.-Keely,
(Stephen), Tyler

10. Timing of deformation in the Laramide is consistent with the passage of the Shatsky Conjugate.
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FIG. 7 Stratigraphic cross-section of Cretaceous rocks from central Utah to northeastern Colorado. Thicknesses are based on well and outcrop control. Vertical exaggeration approximately x151. The
Castlegate Sandstone has been interpreted as a product of “antitectonic” sedimentation (Yoshida et al., 1996). Colors were utilized in the paleogeographic maps. Abbreviations: Ksx, Sixmile Canyon
Formation; Kfv, Funk Valley Formation; Kav, Allen Valley Formation; Ksp, Sanpete Formation; Kr, Rollins Sandstone Member; Kcz, Cozzette Sandstone Member; Kco, Corcoran Sandstone Member. (From
Molenaar and Rice (1988).)



Turonian -91 Ma

Explain what the colors are (greens are areas accumulating coals, bricks are carbonates). One initial question is, why a seaway? Classically, this was thought to largely be high stand of ocean



Campanian

~75 Ma




Maastrictian
~-68 Ma

Seems like an orderly progradation of terrestrial facies out into the seaway...but look at sediment accumulation...
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Fig. 1. Restored Upper Cretaceous isopach map for
western North America. Data for the United States are

from Cross and Pilger [1978b]. Data for Canada are from w
McCrossan and Glaister [1966]. Contours are given in feet

because the original data are presented in this manner.

The irregular pattern in Wyoming and Colorado is due to

Laramide tilted block movements in the foreland. It is the

general pattern and great width of the sedimentation that

requires explanation.

Mitrovica et al., Tectonics, 1989

We need something to pull crust down at least in some areas. What exactly can do this-what is “dynamic subsidence”



Viscous fluids
In a Newtonian fluid, if horizontal velocity is u and vertical is v, then
the shear stress in the fluid is related to the gradient in velocity:
r =7 du
Applying continuity (conservation of fluid) and assuming equilibrium,

can be shown that the dynamic pressure P is related to variations in
fluid velocity u and v (horizontal and vertical):

8_P_ 82u+é’2u
8x_n ox* 97°
JP ’v  J°v
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Fig. 2. Streamlines, 1sobars, and contours of constant shear stress for coupled lithosphere (upper row) and decoupled
lithosphere (lower row) models with o = 60°. Shown are (a) streamlines in a Newtonian fluid, () streamlines in a non-
Newtonian fluid (# = 3), and (c) isobars (solid curves) and constant shear stress contours (dashed curves) for n = 3.

er flow models for () coupled lithosphere and (b) decoupled
Josphere.

Tovish et al, JGR, 1978

Math from Turcotte and Schubert section 6.11. Torque is force x distance, so torque from tip of asthenospheric counterflow is constant downslab
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Tovish et al, JGR, 1978

OK, shows pressure on top (“arc corner”) gets very negative [as this happens, presumably load on base of lithosphere above also become very negative--i.e., pulls down]--bottom side not so strong.
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Tovish et al, JGR, 1978

Combining pressure from last slide with weight of slab and then calculating as a torque gives us this--the idea that there is a point where dip is unstable.
However, this analysis ignores any deformation within the slab. Although this analysis is basis for Bird’s inferences about subsidence, it is not the model

preferred by most other mantle-flow modelers.
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Similarly, we can estimate the force on the upper plate. Math from Turcotte and Schubert section 6.11. So subsidence should vary inversely to distance
from the subduction zone. A major complication is that variations in rheology will allow for this to vary a lot.
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Fig. 5. Approximate estiiate of the net effect of Late
Cretaceous (including Late Maestrichtian) subsidence and
Tertiary uplift for the cross section A-A’ given in Figures 3
and 4. The base of the sequence at the end of its deposition
is shown by a. During subsequent uplift to b the surface
has uplifted to ¢c. The dashed arrows imply that the solid
arrows probably underestimate the total subsidence and
uplift.

Mitrovica et al., Tectonics, 1989

Prediction from this model is that if we remove post mid-K seds, things return to flat. Is this true? (certainly not in NE NM, maybe in some places to
north).



Fig. 10. The thermal field produced by superimposing the ¢ = 0.0, 0.25, 0.50, 0.75, and 1.0 fields of the
model of Figure 6 (At = 0.25, see text). Each field is horizontally shifted, with respect to the previous field,
by an amount equal to the width of the initial block (116 km); only a portion of the cell is shown. The

near-surface dip of the lting subduction is app ly 45°.
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Fig. 11. The topographic profile corresponding to the field
of Figure 10 (labeled a). Also shown are the deflections for
the cases of near surface dips of 60° (At = 0.33, labeled b)
and 30° (At = 0.12, labelled ¢). In all cases, D = 5 x 103
Nm. The arrow gives the position of the right boundary

of Figure 10. Mitrovica et al., Tectonics, 1989
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Fig. 16. Profile a, the lithospheric deflection profile corresponding to the subduction zone of Figure 15 except
with a dip of 60°. The sequence a, b and ¢, shows the lithospheric deflection as the subduction geometry
moves from 60° dip (a), to 25° dip (b), and back to a 60° dip (c). d gives the deflection 25 m.y. after
subduction ceases at the surface. While the basement rebounds from b to d the surface uplifts to e. As in
Figure 15, the topographic profiles are computed under the assumption that the sediment cover (of density

2.30 x 10® kg/m?) remains intact subsequent to the onset of uplift.

Mitrovica et al., Tectonics, 1989
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Pang and Nummedal inferred dynamic subsidence starting c 84 Ma and large by 79 Ma; could also be change in flexural rigidity?
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Location of the hingeline between the foredeep and the forebulge during the Campanian-Paleocene. The arcuate trend of the hingeline indicates the locus of greatest flexural load in the orogen—at the center of
the arc. Abbreviations: C, M, P, Campanian, Maastrichtian, Paleocene; e, E, Early; I, L, Late. The location of maximum loading shifted progressively northward during the Late Cretaceous-Paleocene (Catuneanu et al.,
1999, 2000).
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Catlimeanu et al., Geology 1997
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Lower right figure shows reciprocal stratigraphy with biozones and presence of airfall ashes from Alberta.
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But will sublithospheric forces that produce a basin also
produce stresses consistent with early Laramide

deformation?
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Consider loading the lithosphere...




Material is drawn in towards center and area is depressed




Vertical compressional stresses decrease...
radial compressional stresses increase...
but what of tangential stresses!?




Vertical compressional stresses decrease...
radial compressional stresses increase...
but what of tangential stresses!?




As material moves in, hoop stresses get strongly
compressional




So you could expect radially symmetric folding or faulting

But what if there is a regional stress field?




Estimate overall stress field:

Stresses above a
sinking sphere
(Morgan, 1965)

Uniform east-west
compression
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Exact degree of bending of stresses depends on the ratio of the load to the regional stress field.
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