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Collision and “orogenic collapse”

“Flat slab” models
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Sierra Pampeanas as an analog
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So what of this analog? Style of deformation is similar, but is that reflective of driving force or simply the way that kind of crust shortens?



Modemn South America Early Eocene, Western North America

Sierra Pampeanas as an analog

Similar structural style
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Sierra Pampeanas differences
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What of pre-shortening sedimentation? In Pampeanas, most sections only a few 10s of meters; up to maybe 300m in some wells. There is a ~10km deep
foredeep to the west...



Rockies has kilometers of section. Also has undeformed Colorado Plateau between foreland and thin-skinned deformation--larger than entire Pampean
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Tien Shan as analog




Tien Shan differences
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Is there an “India”?

Active shortening between collider and
foreland mountains?

Colorado Plateau as rigid as Tarim Basin?
Subsidence pre-shortening?

Dickerson, Tectonophysics, 2003




A. Broad flat slab B. Narrow flat slab
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Flat slab model

w

Basal shear produces maximum
normal stress well inland

* Also connects magmatism with tectonism
 Sets up mid-Cz volcanism
* Analogs in South America

Although flat slab originally from volcanic variations, basic physics, goes back to Dickinson & Snyder (1978) and esp. Bird (1984, 1988).
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...but has other issues

Bird, Science, 1988

|) Removal of lithosphere

Fig. 3. (A) Final (middle Oligocene) displacement and thickness of the mantle
layer of North America lithosphere. Thickness is contoured in 20-km intervals.
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Flat slab predictions

Livaccari and Perry, Geology, 1993

Eastward limit of
significant lithospheric
thinning and crustal
refrigeration during
Sevier-Laramide orogeny|

Bird, Science, 1988
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22 Rand-Pelona-Orocopla schist - Upper Cenozolc basalts (<5 Ma)

Slerra Nevada arc

Region of mafic volcanic fields

(<5 Ma) with asthenospheric

mantle source (& Nd units)
C—Cima (+8) MT—Mt. Taylor (+5)
CS—Coso (+5) P—Potrillo {+7)
G—Geronimo (+8) SC—San Carlag (+8) | D—Dotsero (-4) O—Ocate (+1)
GC—Grand Canyon (+6) SG—St. George (+8) | DV—Death Vailey (-8) RC—Raton-Clayton (+1)
GW—Grand Wash (+6)  SP—Springerviile (+6) | HB—Hopi Buttes (+3) SF—San Francisco (+2)
MD—Mojave Desert (+7) ZB—Zuni-Bandera (+6)] JZ—Jemez Mtns (+2) SR—Snake River (-3)

Region of mafic volcanic fields (<5 Ma) with
lithospheric mantle source (€ g units)

BP—Big Pine (-4) LH—Leucite Hills (-10)  T—Taos
CF—Crater Flats {-8) MC—McCoy (-5) Plateau
CR—Carrizozo (0) ND—Navajo diatremes (+2) (0}

* Localitles where transition from lithospheric to asthenospheric mantle
source ls [dentified and time of transition (g4 units and age of volcanics)
L—Lucero Mins., 8 - 4 Ma (+3 at 8 Ma and +7 at 4 Ma)
LC—Lunar Crater, 9 - 4 Ma (-4 at 9 Ma and +6 at 4 Ma)
GB-20 10 15 Ma basalts NW of Glla Bend LM—Lake Maad area, 12 - 5 Ma (-6 at 12 Ma and +6 at 5 Ma)
compared to <5 Ma basalts of G, SC, & SP, S—Soccoro area, <8 Ma (-2 at >8 Ma and +5 at <9 Ma)
15 - 5 Ma (-4 at >15 Ma and +6 to +8 at <5 Ma) _U—Uvas Basalt, 27 - 10 Ma (0 at >27 Ma and +5 at <10 Ma)

CH—Casteneda Hills, 11 - 7.5 Ma
(-6 at 11 Ma and +6 at 7.5 Ma)




Flat slab predictions

NAVDAT ages

If buoyant plateau, effects should propagate
volc‘:?nic intrgsive N AVD AT ages
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What do flat slabs do?
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Make things go up!?

Espurt et al., Geology, 2007
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As an aside, the Skinner et al. 2013 paper argues that due to asymmetry in spreading in Pacific, Inca Plateau is 600 km farther east than shown here



Oceanic plateau under some
circumstances

(Models with plateau solid lines, without dashed)
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What makes slabs go flat?

van Hunen et al., PEPI, 2004
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Some other effects that can shallow subduction

Ly (km)
100.200. 300.
T T | T T

0.
T

T T T
| Metastable basalt

L | I
30. 40.
age slab (Ma)
I ' | '

| | ]
400. 600. 800.
Tv (°C)

Ly (km)
0. 100.200.300.
T T I T T

.\?—?

L L

IR (T T —

2. 4,
Vou (CM/Y)

200.  400.
s, (MPa)

5. 10. 15. 20. 25.
WMW (x10° km?)

van Hunen et al., PEPI, 2004




100° E

Observed effect of subducting a plateau?
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Observed effect of subducting a plateau?
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Fig. 3. Location of Pacific—Farallon/Nazca conjugate features relative to a given flat slab. We have placed points along Pacific plate bathymetric highs, and created conjugate features using standard plate reconstruction techniques and the rotation model of Miiller et al. (2008). A plot for each flat slab shows the proximity of a
reconstructed point on the bathymetric anomaly to that flat slab, plotted as a function of time. The thickness of the line scales with the crustal volume in a 100 km 200 km box around the Pacific plate conjugate point. The grey box represents the spatial and temporal extent of the flat slab from Ramos and Folguera (2009).

We expect impactors to pass through this target zone if the buoyancy hypothesis is the cause of the flat slab. The map shows the location of the flat slabs along the South American margin (Ramos and Folguera, 2009). The black triangles are the point from which our distances are calculated. See Supplementary Table 3 for
information about the conjugate points.



Where is flat slab today?
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Liu et al., Nat. Geosc.,2010
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“Old Farallon” is basically ~1300km depth shown as pre-Laramide Farallon plate in this image (it is Mescalara in later papers , which is Jurassic). Black dots
in Liu image are “tracers" in their mantle flow model tracking the Shatsky conjugate [but there is some circularity here]



...or is it even Farallon?
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Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.

Maxson & Tikoff, Geology 1996
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Collision and collapse predictions

Figure 2. Paleogeographic configuration of
dextral transpressional collision (“run”) of
Baja BC microplate and North America, re-
sulting in the Laramide orogeny. Baja BC is
inferred to have had an east-dipping subduc-
tion zone beneath its western edge and dex-
tral, transpressional fault system on its east-
ern edge, which shut off subduction-related
arc magmatism on adjacent North America
during its northward movement.
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Collision and collapse difficulties

Where is collisional deformation near
margin?

Figure 2. Paleogeographic configuration of

dextral transpressional collision (“run”) of

Baja BC microplate and North America, re-
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Latest K subsidence

COMB orientation
and timing

Duration

—

So we have some contradictions. Also note Colorado Plateau, extent of arc shutdown. UNclear if schists record true flat slab



A. Shallowing subduction as North America moves westward
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Flexural estimate of lithospheric strength
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Attempts to measure flexural rigidity at different times—often in different places at different times. Argues that the change from Cenomanian to
Campanian is due to a change in lithospheric strength. Clearly points 6 & 7—with huge error bars—are crucial to this—eastern Green River Basin and Wind
River Basin.



