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A lot of the variation is apparently most closely related to the vertical descent rate (V * sin(dip)).
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Exact mechanism for this relation is debated still, but increasingly seems like the temperature in the mantle wedge is what controls this
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At the broadest level (all of North America), it would seem that magmatism is pretty constant...
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Observationally, arc (expressed as plutons) at any one latitude seems to vary in intensity (though it is unclear if this captures the full E-W extent of arc)
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Ducea: Plot of total California arc apparent intrusive flux (area of presently exposed plutonic rocks produced per units of time; in km2/m.y.) vs. time of magmatism, using an updated version
of CONTACTS88 (Barton et al., 1988). About 600 plutons representing almost 65% of arc-exposed area have been included in database. Line labeled DD indicates period of ductile
deformation in exposed mid-crust of arc and in granulite xenoliths. RS84 corresponds to magmatic addition rates in range of 20-40 km3/km e m.y., typical of island arcs (Reymer and
Schubert, 1984). Magmatic addition rate is defined as total volume of magma produced in an arc per unit of time scaled over length of arc, assuming an average granitoid thickness of 30 km
for California arc.
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Detrital zircons from Coalinga area (southern Coast Ranges) show a significant source in 120 Ma window that seems absent in batholith—could be plutons
now buried under Great Valley that Saleeby has spoken about at a few meetings. So a bit of a challenge in terms of understanding arc evolution. Other site
in northern Coast Ranges doesn’t see the 120 Ma spike...



retro-arc

p3 /2 p2 (1 p1

80 100 120 140 160 180 200 220 240

Age (Ma)

Barth et al., Geology, 2013




Figure 1. A: Histogram of U-Pb zircon ages from plu-
tonic rocks from California. Data from Stern et al. (1981),
Chen and Moore (1982), and Silver and Chappell (1988).
Although these data are imperfect representation of rela-
tive volumes of plutonic rocks, they indicate significant
Late Jurassic and Cret: fluxes, separated by earli-
est Cretaceous lull. B: Normal and tangential compo-
nents of convergence between Farallon and North
American plates, calculated from data of Engebretson et
al. (1985) (see text). Curves were smoothed by three-
point moving average. Note that predicted time of
change from sinistral to dextral convergence correlates
with lull in plutonism. Exact time of change depends on
assumed orientation of trench; sense of movement pre-
dicted by reconstructions is consistent with geologic
data (see text). Period boundaries from Harland et al.
(1982).
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but within arcs, there seems to be episodic instances of major plutonic activity...maybe due to changes in ability to emplace plutons?
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Structural work in the Sierra points to vertical elongation and arc-normal shortening.

Fig. 3. Lower hemisphere, equal area projections of metamorphic foliations and lineations from Western Metamorphic Belt and host rock pendants in central Sierra Nevada. Kamb contours with 2.0
sigma contour interval (C.l.) are added. Dots in the red shade are poles to the metamorphic foliation and dots in the blue shade are metamorphic lineation. NF Number of foliation, N. Number of
lineation. Cylindrical best fits are calculated using Stereonet 9.0 and 95% confidence ellipses (Allmendinger et al., 2012; Cardozo and Allmendinger, 2013).
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Note Z is maximum shortening (so arc-normal here) and X is maximum elongation (vertical). Note volume loss/gain trades off with extension/shortening

along Y axis.

Fig. 5. Finite strain measurements plotted in the space of X- and Z-extension percent (negative value 14 shortening; X, Y, Z are the longest, intermediate and shortest axes of a finite strain ellipsoid). Each dot
represents an individual strain measurement. The central coarse red curves represent the relation between X- and Z-extension if the deformation is plane strain. The thin red curves represent the relation between
X- and Z-extension if there is volume loss or Y-extension during deformation. Measurements from slates are shown as yellow dots, whose finite strain ellipsoids are likely to be affected by primary compaction
during sedimentation and lithification. The plot suggests that the host rocks in the central Sierra Nevada are strained at about 50% in average with <15e20% Y-direction length change and/or potential volume
changes.
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Figure 6. A: Plot of total California arc apparent intrusive flux (area of presently exposed plutonic rocks produced per units of time; in
km?2/m.y.) vs. time of magmatism, using an updated version of CONTACT88 (Barton et al., 1988). About 600 plutons representing almost
65% of arc-exposed area have been included in database. Line labeled DD indicates period of ductile deformation in exposed mid-crust of
arc and in granulite xenoliths. R$84 corresponds to magmatic addition rates in range of 20-40 km?km « m.y., typical of island arcs (Reymer
and Schubert, 1984). Magmatic addition rate is defined as total volume of magma produced in an arc per unit of time scaled over length of
arc, assuming an average granitoid thickness of 30 km for California arc. B: Plot of apparent intrusive flux vs. normal convergence rate
between Farallon and North American plates in California (Page and Engebretson, 1985) for 5 m.y. intervals between 170 and 60 Ma. C:
Plot of apparent intrusive flux vs. angle of convergence in degrees. Zero corresponds to normal convergence, positive angles reflect right-lateral
motion, and negative angles represent left-lateral motion.
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Figure 2. Initial ey, whole rock values, as a function of crystallization
age for plutons in the (A) Coast Mountains batholith (British Colum-
bia) and (B) Sierra Nevada batholith. Ducea & Barton, Geology, 2007

Estimates of intrusive flux inferred to be episodic...maybe related to obliquity? (Which was kind of what Glazner was going for). Notes ENd seems related to
flux: high flux when End low...so cartoon at lower right.
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Ratios from detrital zircons (solid lines) and magmatic zircons (points) Interpret the decreasing Yb/Gd as increasing crustal influence (basically, garnet is increasingly
involved as a residue, requiring thicker crust); Th/U high in higher volume episodes requires crustal input. Lull 1 maybe related to extension (little slab derived fluid +
little crustal involvement [GSA talk 2016 claimed there was nothing significantly different in lulls-Hernandez et al. poster Tuesday afternoon]
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Figure 3 | evolution of Cordilleran orogenic systems. a, Schematic cross- section (not to scale) of a Cordilleran orogenic system with a sediment- starved trench, illustrating the effects of eclogite root development and removal on isostatic and orogenic wedge taper (« + f8). For clarity, the magmatic arc is omitted. All lettered labels refer to other
parts of this figure. Dashed lines labelled d represent the topographic profile and base of the lithosphere configuration at the peak of eclogite (gray shading) growth. Solid lines labelled e show post-drip/delamination configurations, in which the base of the lithosphere is adjusted upward and the surface has rebounded to high elevation.
Kinematic processes responding to changes in orogenic wedge taper (duplexing and underplating) are also illustrated. b, Critical taper diagram in terms of surface slope («) and the angle of the basal detachment (B) depicting the evolution of taper in forearc and retroarc orogenic wedges at different stages of the cycle. The dot labelled ¢
represents a given orogenic wedge at the critical taper (the straight line with negative slope), and arrows indicate taper changes corresponding to configurations labelled in part a, and illustrated in cross sections c—g of this figure. c, Retroarc underthrusting. d, Development of an arc HFE and growth of the eclogite root (Ec) beneath the arc
causing a regional isostatic depression of surface elevation, and internal underplating and duplexing in the forearc and retroarc wedges. e, Eclogite root foundering, regional uplift and outward propagation of the flanking orogenic wedges, upper- crustal extension and ignimbrite flare-up. Subduction of a buoyant oceanic slab immediately after
stage e would potentially produce the situation illustrated in f, where flat-slab subduction creates crowding beneath the arc and drives strain into the foreland region. As the slab returns to a normal subduction angle g, upwelling asthenosphere (As) may promote a regional ignimbrite flare-up.



Age (Ma)

o : East Detrital
G £ Accretionar Great Valle Magmatic Retroarc Retroarc Sevier Zircon [Fig.,
sRe] 9 9
<+ Wedge Forearc Arc Hinterland Thrust Belt Foreland|Record| 3
50 Major ['Co 3 if 17 - [~
— 4 B i @ D Diffuse 0 17
Sl | kS i GVF.t. 5| 25 arc | HDP R &
60 2 B §g kjcompositong | -5 migrates =
.8 250 0 [y |85 5 b e Eastern Thrust36 =
o O s e 20 | € = &) eastwar o)
3 @ o2 5 2, |58 % '\(‘)d(tlsg << 23 System ] D
704s ®© LM B 55 |0 Vi e & ) 1 IA2 £
Q s, 'o £2 : . + Anatexis MB ®©
(2] B /42 5§ 10,14y |- 18 of thickened s
4 22 ] 8 3° \ | ROP-SS crust —
80 = ] A1 4 |+lunderplated 22 37 —
[ ] E-ward | I + % c CI Al
— [ ] 6' onlap of z .. V] N
90 - Cen n GVF1 0 V2 . g s K_‘nemaf\g jump C
1,2 | ] / ., o 20 : @5
o " ! SRS
100 45 . LN\ T :_ . ML
= YB ol g M g . H 221 2%
9 1 P
EERRCEEE i I AR T = A '
ol m >0 . + H B =y 33
@ Ov . WO E 2e 1
120 PP gl 3 NEERE & e 1
- sl 8 2
- 4 w012 10 ® L |o|: 198 : gg wpc 3% B
sl > vi & | KL IZE & =
H P o el g5 Z NC D
130 < sfe c v 5] 1 fz22 © B Western
2 cg |5 g | 131415 Jol 1€ 25 5% 29 30 JThrust System
09 7] © o : 8
140 48 g2 : | [~ o T2 .
© oG .+~ ur
o 20 () 38
%] Ea%) 0 -3 kml - lv |IDS} W
150 14 T2 . { : 25 [] ]
E 21 27 31 39 A
24 HFE [DVES LFT MCD
160 ’ A >
Exhumation Subaerial erosion, -20 +10 Shortening Magmatic high flux event Relative
canyon cuttin Eng i 9 9 Probabilit;
= . Comm%n Accr(gtion & b maxg;[%um Major Major unconformity Fcr;:e:rcl I—y
: Extension sparse | metamorphism —— minimum | Minor [*4* ] Hinterland basin Retroarc /\
Abbreviations: GVF petrofacies: + = Quartzo-Feldspathic, V= Volcanic-Rich

PP, Pickett Peak terrane

YB, Yolla Bolly terrane

Cen, Central Belt

Co, Coastal Belt

GVF, Great Valley forearc basin

IDS, Independence dike swarm

ROP-SS, Rand-Orocopia-Pelona &
Sierra de Salinas schists

DVES, Death Valley-Eastern Sierra thrust belts
LFT, Luning-Fencemaker thrust belt

MCD, Manning Canyon detachment

CNT, Central Nevada thrust belt

WUT, Western Utah thrust belt

NC, Newark Canyon basin

SP, Sheep Pass basin
KL, King Lear basin

DeCelles

WPC, Willard-Paris-Canyon Range thrusts
M, Meade thrust

L, Laketown thrust

C, Crawford thrust

MB, Medicine Butte thrust

A1, A2, Early and Late Absaroka thrusts
HDP, Hogsback-Darby-Prospect thrusts

GVF Petrofacies: SC, Stony Creek; L, Ladoga; B-C, Boxer-Cortina; R, Rumsey

and Graham, Geology 2015




Proposed cycle

HFE
Forearc

140-105 Ma

Exhumation

Laramide flat slab\

Ec, Eclogite
80-50 Ma  LF, Laramide foreland

DeCelles and Graham, Geology 2015




More cycles. Note HFE =

[080-90 Ma (late HFE) _

~ |©90-110 Ma (early HFE) F
| @110-140 Ma (lull) ol
0140170 Ma (HFE) |4 80 U-Pb age .20
I e

2.00] HFE I
<100 < “; o ;033‘?
(2]
<
120 M 3 mm/yr H\range
140l West . . migration rate crest  East
10

G <€—paleo-trench 080-90 Ma (late HFE)

) ©090-110 Ma (early HFE)
@110-140 Ma (lull)
©140-170 Ma (HFE)

Pacific

35°NI Ocean

M i — ? . o (_f)

121°W 120°W  119°W  118°W m --80].0

- 70|~

<, [300 - B i ~60| =

3o |00 magmatic X

£ Tull <
Ne ho HFE HFE - -

ol 2.5

ar/ka

= (o isotopic isotopic — . 225
?Z:’ 0 pull-down isotopic pull-down 20
“ 10 pull-up 20 II 1.75

c
85|D cumulative S 60| - 2Fe,0, x 100
—_ shortening ) . ®© 2Fe, 0, + FeO hl
X 50 high strain high strain < 40 23 |h
1 rate period rate period 3 20 - 5] (= SR s

5 5] i
S - m ncreasing fO
= Si0,< 70 wt% o 2
Eoo|E 2 D 57 A = L _120 -100 —80 —60 —40 -20 0 20 40 60
é ;(()) Distance east of range crest (km)
2 0
w 200 180 160 140 120 100 80

Age (Ma) Chapman and Ducea, Geology, 2019

High Flux Event.

Migration of the arc tied to last HFE, lower End. Note appearance of Sr/Y
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More cycles. Note HFE = High Flux Event. Mlgration of the arc tied to last HFE, lower Eng.
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More cycles. Note HFE = High Flux Event. Mlgration of the arc tied to last HFE, lower Eng.
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More cycles. Note HFE = High Flux Event. Mlgration of the arc tied to last HFE, lower Eng.
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Cycles in the Mojave Desert south of the Sierra. Note “pulldowns” ¢ 75, 155 Ma inferred here to be with contraction like Sierra.
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When you look at entire Cordillera, seems controls are variable...so maybe some of the stories told in WUS are confusing coincidence with causality. Do
these episodes correlate with plate kinematics?
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More recent attempt to look at cycles through entire Cordillera. This just Sierra part. Diagonally hatched bands mark magmatic flare-up events, visually delineated on the basis of
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When you look at entire Cordillera, seems controls are variable...so maybe some of the stories told in WUS are confusing coincidence with causality
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Are these episodic arc flareups expressed in arc thickness? How would we know? Also, why would this work? Sr like solid at low pressures, melt at high
(when plag goes away); Y the opposite (likes garnet and amphibole at high pressure).

Figure 2. Global correlation between geophysically determined Moho depth and median Sr/Y from Pliocene and younger magmatic arcs, compiled from GEOROC database (georoc.mpch-
mainz.gwdg.de/georoc/). Median Sr/Y was calculated using same filters and processing steps as applied to Great Basin data. Data regression includes all data except central segment of Central
Volcanic Zone (CCVZ) in the Andes; see text for discussion. Com- piled data are included in Tables DR4 and DR5 (see footnote 1).
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Apply to Great Basin (hinterland)

Figure 3. Plot of changes in median Sr/Y in magmatic rocks and calculated crustal thickness through time for Great Basin region. Shaded region and dashed arrows show interpreted trends in data.
Timing for events listed at bottom of plot is constrained by in- dependent geologic studies; see text for discussion. Compiled and plotted data are included in Tables DR1-DR3 (see footnote 1).
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Another proxy: La/Yb for intermediate rocks. This is similar in logic (but empirical) “As crustal thickness increases, whole-rock heavy rare earth element (HREE)
concentrations decrease and light rare earth element (LREE) concentrations increase, due to the high-pressure stabilization of HREE- enriched phases such as amphibole and
garnet at the expense of LREE-enriched phases such as plagioclase (Hu et al., 2017; Miintener and Ulmer, 2018). Despite the low concentration of LREE in plagioclase, the mineral

is impor- tant because of its abundance in continental- arc rocks and because it is unstable at higher pressure, in contrast to other LREE-bearing accessory phases such as
monazite.”

Intermediate (see text for discussion of geochemical filters) whole-rock La and Yb data used in this study (blue filled circles), data from the Ray Cu-porphyry system (Arizona, USA) (pink squares), and
data from the Quaternary Tonga arc (gray open circles; compiled from the GEOROC database, http:// georoc.mpch-mainz.gwdg.de). Solid lines are crustal thickness calculated from La/Yb using the
empirical relation of Profeta et al. (2015). The modern Tonga arc has a geophysically determined crustal thickness of ~20 km (Contreras-Reyes et al., 2011) and is only shown for comparison.
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Another proxy: La/Yb for intermediate rocks.

Intermediate (see text for discussion of geochemical filters) whole-rock La and Yb data used in this study (blue filled circles), data from the Ray Cu-porphyry system (Arizona, USA) (pink squares), and
data from the Quaternary Tonga arc (gray open circles; compiled from the GEOROC database, http:// georoc.mpch-mainz.gwdg.de). Solid lines are crustal thickness calculated from La/Yb using the
empirical relation of Profeta et al. (2015). The modern Tonga arc has a geophysically determined crustal thickness of ~20 km (Contreras-Reyes et al., 2011) and is only shown for comparison.



Comparing the two here...

Comparing
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Yb

Profeta et al., Scientific Reports, 2015
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How else might we estimate crustal thickness?

Coney and Harms, Geology, 1984

One of the more influential paleothickness maps...



How else might we estimate crys'gal thickness!?

Coney and Harms, Geology, 1984

Simply push everything back. [These are old thicknesses...]



How else might we estimate crustal thickness?
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Simply push everything back; a more sophisticated version (and this only gets you to 36 Ma)
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Simply push everything back; based on a geological section across the Great Basin.




How else might we estimate crustal thickness?
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Can try using strain markers and magma volumes...
Three proposed models for ductile straining mechanisms. Model A is homogenous tectonic thickening only. Model B only has the magmatism. Model C combines tectonism and magmatism. Al, B1, and C1 show

the cartoon illustrating the corresponding models. A2, B2, and C2 show predicted trends of Lode's ratio (g), or strain shape, changing with depth. A3, B3, and C3 show predicted trends of strain magnitude (g)
changing with depth. See text for full discussion. BDT 14 Brittle-ductile transition.



How else might we estimate crustal thickness!?
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Can try using strain markers and magma volumes...
Crustal thickness determined by host rock strain (¢H) and pluton volume fraction (b). The initial thickness of the crust is assumed to be 25 km and the calcu- lation takes 20% shortening in plutons and 20% volume
loss/length change along Y- direction of host rocks into account. If eH 14 -0.65 and b 14 0.8, the resulting thickness of crust is ~97 km. The crustal thickness show in this plot does not include exhumation.

Exhumation will reduce the thickness to 77e87 km for Late Cretaceous Sierra Nevada



Maybe this matters for more than just arc...

Before magmatism and deformation After magmatism and deformation

H'=80km migration of
Ho=25km h'= ~5km H’ => magmatism

h,=0km

continental crust

— Arc Moho
Arcroot: 30 km ?

Impeded
mantle flow

Mantle flow B

Cao et al,,J Struct Geol., 2016

Keep in mind when we talk about dynamic topo and arc shutdown, etc.

Cartoon shows how magmatism and deformation thicken the crust. (A) is the geometry of an arc system before magmatism and deformation. The initial thickness of crust (HO) is 25 km and elevation (h0) is at sea level (0 km). The mantle flow is
not impeded. (B) is the geometry of the arc system after magmatism and deformation and it may apply to the Sierra Nevada arc at ~85 Ma. Crust is thickened (H') to ~80 km and elevation (h') is ~5 km. The total thickness of crust and arc root
extending into mantle wedge is ~80 km. Mantle flow is impeded. The thickened crust could also cool down the mantle wedge. The impeded mantle flows, cooling effect, and the slab flattening are likely to contribute to the migration of

magmatism.
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On to something different if time. Have been finding with increasingly high resolution dating that plutons are in some cases very long lived. This groups
suggestion is that plutons are built more by successive intrusions and not a big cauldron



pluton building «*

—

—growing plutons |

ARIY

small volume partial melt

ignimbrite building

| == —_—

this panef
intentionally left blank

1

time

Glazner et al., GSA Today, 2004




Migrating tube

W
A\
oe
":\.\g(a“"“ Oldest

Stationary tube

O

Vertical magma
flow through
cylinder shaped,
stationary
magma body

Graded
schlieren

Graded
schlieren

Vertical magma
flow through
cylinder shaped
migrating tube
in magma body

%)
©

2
Q
N trough axisV  \& shear sorting

N

Vertical Face D

Magma channel flow

Diapir

Simple schileren
front at
diapir head
Diapir magma
different from
host magma

C Kfs Pipe
“log jam”

E

Plume head

AN

Plume head material
and host material
are similar

Paterson et al., Geosphere, 2009

Figure 18. Features discussed in this paper, possible relationships between different types
of structures, and the relationships between mineral fabrics and accumulations. (A, B)
Tubes. (C) Pipes; Kfs—K-feldspar. (D) Troughs. (E) Diapirs. (F) Plume heads. Some draw-
ings are based on diagrams in Weinberg et al. (2001), but with a number of additions.
Trough illustrations show typical relationships between trough cutoffs, mineral fabrics,
magma flow directions, and crystal accumulations seen in the field. Arrows show implied

magma flow directions in each structure.
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