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Reference: Sleep and Fujita, Principles of Geophysics, sections 7.4 and 7.5 cover 
velocity (infinitesimal) and finite rotations. 

The key element in plate reconstructions is the use of poles of rotation (often called 
Euler poles, though this is strictly inaccurate).  Note that we will be using finite rotations, 
which sometimes don’t follow some of the rules for infinitesimal rotations or rotation 
rates often used in geodetic applications. 

First start with the recognition that the displacement of a body constrained to remain on 
the surface of a sphere can be described by the rotation of that body about an axis through 
the Earth’s center with a specified angle w. The intersection of the axis with the Earth’s 
surface is the pole of rotation (there are two). This can be parameterized in polar 
coordinates as a vector W of length w (in radians) with angles equal to the latitude and 
longitude corresponding to the pole. (Note that the polarity of w reverses for the opposite 
pole).  Generally, a rotation is positive when it is counterclockwise while looking towards 
the center of the Earth from the pole, but conventions do vary. 

When dealing with velocities, the rotation rate  can be crossed with the vector  to 
a point at the surface from the earth’s center to get the absolute velocity of the point at 

. Note that for finite rotations,  yields a vector of a length w X sina, where a is 
the angle between the pole and  and X is the length of . This is equal to the 
displacement of the point along the surface of the sphere, but the vector itself does not 
point to the position of the point after the rotation. Instead, the math gets a bit uglier, and 
in vector notation, the vector  of the new location of the point that was at  is found to 
be: 

  (1) 

This is rather awkward, and so instead we often will use matrix math to obtain the 
position of a point.  If our rotation tensor R describes the rotation, then . The 
form of R is itself tedious but readily programmed: 

  (2) 

where the vector (x,y,z) is the Cartesian coordinates of the unit vector pointing along W: 

  (2a) 

where l is longitude and q is latitude of the pole. Note that the inverse of the rotation 
matrix is its transpose (which is also the rotation matrix when negating w). 
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An absolute rotation is nearly irrelevant in tectonics (though there have been numerous 
attempts to try to define an absolute frame of reference).  Instead we specify motion of 
points on one plate with respect to the points on a second plate. Even this is vague, for we 
need a time frame.  To fully disambiguate things, let us use call the rotation that moves 
plate B from its position at time 1 to its position at time 2 relative to plate A  and so 
the associated rotation tensor is .  So a point  (relative to plate A) on plate B at 
time 1 will move to , again relative to plate A. 

For a plate reconstruction, we observe magnetic anomalies on two plates that were 
once at the same place.  In practice, we cannot actually match point to point on each 
anomaly with the exception of the points where the anomalies intersect transform faults.  
Thus we seek to locate the pairs of anomaly-transform intersections on either side of a 
ridge and determine the rotation that maps one set back onto the other.  This is a non-
trivial inversion as for any given pair of points, there is an infinite number of rotations 
that will map one point onto the other (the poles lying on the great circle bisecting the 
two points).  Sometimes the transforms themselves are used, as they should describe 
small circles about the rotation pole, but often there are issues with the geometry of the 
transforms that limit their usefulness. Introducing uncertainty in the location of the 
transform-anomaly intersection adds yet more difficulty (and has often been dispensed 
with).  While we should be aware of these difficulties (which are discussed in Stock and 
Molnar, 1988), let us presume them solved and for any magnetic anomaly A(t), and so we 
have , which is the rotation that moves plate B from its position at time A(t) to its 
modern position. This rotation matrix represents a finite rotation about a pole with a finite 
rotation angle. 

These are the initial rotations that are usually reported in the literature for pairs of 
plates separated by a spreading center. We usually find them limiting for two reasons: (1) 
we often desire to know the instantaneous relative motion of these two plates past one 
another and (2) we are often interested in the motion of plates separated by a destructive 
or transform boundary).  The instantaneous motion would be trivial to determine if the 
position of the Euler pole remained the same through time, but in fact this is rarely the 
case (and it can be shown that it should not be the case: on a planet with three plates, if 
you hold the position of the Euler poles of two pairs of plates constant, it can be 
demonstrated that the position of the other pole cannot remain constant provided the 
poles are not all colinear).   

To obtain the stage pole (to pole of rotation describing motion over a time interval in 
the past), we first note that the modern position of a point  on plate B is simply the 
product of a rotation matrix from time 1 to the present acting on the original position 

: 

  (3) 

But of course, the point was first rotated from its position at time 1 to a position at time 
2: 

  (4) 
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and in turn from time 2 to the present 

  (5) 

If we combine equations 3 and 5, we get 

  (6) 

Note that the rotation of a point from its position at time 2 to its position at time 0 
followed by a rotation from its position at time 0 to its position at time 2 (which is the 
rotation about the same pole with an opposite polarity for the rotation angle) yields no 
motion at all (the identity matrix), so those terms cancel and we have an equation 
allowing us to obtain the net rotation of plate B relative to plate A from time 1 to time 2 
from the modern measurements of rotations of the different magnetic anomalies. (As an 
aside, note that the rotation that moves B relative to A over time from 1 to 2 is not 
trivially related to the pole that moves A relative to B over the same time: this is because 
the pole positions are relative to the fixed plate and so generally these two rotations will 
not share the Euler pole position). 

The second problem is solved by finding a series of connections between our two 
plates A and B and using a series or known rotations to recover the unknown rotation.  So 
let us say that there is a plate C that shares a divergent boundary with both plates A and 
B.  So let us start by taking points on B at time t and rotating them back to their position 
relative to plate C at time 0 (today); this is a variation on equation (3): 

  (7) 

Now we know where our points were with respect to plate C, but plate C has moved 
from plate A: 

  (8) 

The X(t) on the right here represents points with respect to plate C, so we can combine 
(7) and (8) to get 

  (9) 

A comparison of equations (9) and (3) shows that the product of the two rotation 
matrices is equivalent to the single rotation tensor connecting A and B.  We thus can 
recover the net motion between plates A and B.  Note that this is not commutative: you 
have to combine rotations in the proper order. 

From this information, we can go a step farther and now derive the net Euler pole for 
the motion of plate B relative to plate A.  If we reexamine the components of the rotation 
matrix R in (2), we see that the components of the Euler unit vector can be trivially 
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determined (if we know the net rotation) by adding or subtracting elements of the net 
rotation matrix.  So, for instance,  
  (10) 

where x, y, and z are the components of the Euler pole.  To get the magnitude of the 
rotation, w, one possibility is to use the second invariant of the matrix: 
  (11) 

(The subscripts will correspond to the lead term in (2)). 
With these two precepts in mind, you can develop a plate circuit connecting distant 

plates.  Of interest to us is the motion of the plates in the Pacific Ocean, including the 
modern Pacific but also the ancient Farallon, Kula, Vancouver, and Resurrection plates. 
Again, there are two issues of concern: one is that only tiny and very young fragments 
exist of these ancient plates (so we lack the magnetic anomalies on those plates to match 
up with equivalent anomalies on the Pacific plate), and the other is that you have to cross 
a bunch of spreading centers to get from North America to the plates in the Pacific basin, 
and some of these spreading centers have uncertain histories. 

First, the issue with the missing plates.  In general, we observe that magnetic anomalies 
are symmetrically distributed across a spreading center: the rate of creation of plates on 
either side of the spreading center is generally the same.  The exceptions usually occur in 
places where the ridge jumps into one plate or the other, and the patterns of such behavior 
usually can be observed in the magnetic anomalies. If we assume symmetry, then the 
rotation that moves the anomaly on the Pacific plate produced at a ridge between Pacific 
and, say, Farallon from time 1 to that produced at time 2 is half the total rotation of 
Farallon relative to the Pacific.  This is actually a stage pole (that is, the net rotation over 
an ancient time interval) and so is used a bit differently in practice than the normal 
observations of the rotation between anomalies of the same age on different plates (it is 
equivalent to our  rotations above). 

It is extremely important to recognize two things here: first, that we have to assume 
symmetric spreading, and the second is to presume there isn’t another plate between 
Farallon (or Kula or Resurrection…) and North America.  If we had an additional 
subduction zone with some backarc spreading, we might know nothing of what was 
happening at the margin of North America.  During the Late Cretaceous, the spreading 
ridge on the east side of the Pacific plate was near the middle of the Pacific Ocean basin, 
allowing plenty of room for additional boundaries to the east. 

The second issue has been more troublesome.  The plate circuit connecting North 
America to the Pacific runs across to Africa, then through Antarctica and on to the 
Pacific. The main issue is that in the early Tertiary and latest Cretaceous, there are 
uncertainties in the motions across Antarctica (there was a plate boundary between East 
and West Antarctica of uncertain motion) and there are ambiguities in motions within the 
Pacific plate.  Although some work (Doubrovine and Tarduno papers in JGR, 2008) has 
refined these issues and added a separate circuit from Africa through Australia to the 
Pacific, an alternative that has often been considered attractive was to connect plates 
through hot spots. 
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Hot spots remain controversial both in terms of their origin (plumes originating at the 
core-mantle boundary, or somewhere higher, or just migratory melt anomalies) and their 
relative stability.  Observationally, these are volcanic centers that migrate in one diretion 
over time. Jason Morgan most notably advocated that a large number of migratory 
volcanic centers were the signatures of plumes originating deep in the mantle and 
effectively fixed to the deep Earth and unaffected by plate motions.  As such, the 
assumption made was that plumes in the Pacific did not move with respect to plumes 
under Africa.  Thus if you pretend that plumes form a “plate” (a reference frame with no 
internal deformation), you could connect North America through Africa and its plumes to 
the Pacific and its plumes and so avoid worries in Antarctica and the south Pacific 
altogether.  This was the approach taken by David Engebretson in the mid-1980s under 
the guidance of Allan Cox at Stanford.  The resulting plate model has dominated 
discussion of late Mesozoic to early Tertiary plate environments in western North 
America. 

Unfortunately, there was never any theoretical support for the supposition that plumes 
do not move relative to one another.  Numerical and physical simulations of plumes in a 
convecting medium show that they should move relative to one another, probably at rates 
of tens of percent of relative plate motions, if not occasionally higher.  If plates 
reorganize, such that the motions of large plates relative to one another shift to being 
about very different poles, one expects major shifts in the positions of any plumes under 
one plate relative to those under others.  Observationally, while there is a lot of 
consistency between hotspot tracks within a single plate, there is not consistency over 
multiple plates and there are inconsistencies between tracks across large plates like the 
Pacific. These errors are generally additive and make the use of hotspot-based 
reconstructions shaky at best in the distant past. Finally, actually getting ages of the 
positions of hotspots is difficult in practice as volcanic edifices have finite lifetimes. 
Because of all of these difficulties, plate reconstructions relying on fixed hotspots should 
be treated as quite uncertain; unfortunately, the literature is full of papers accepting even 
small changes in plate motion from the Engebretson models as significant and worthy of 
interpretation. 

Reconstructions for older times can also rely on other information. Some efforts, for 
instance, attempt to restore subducted lithosphere now inferred from high-wavespeed 
anomalies in the mantle back to the surface (e.g., Sigloch and Mihalynuk, 2017). Others 
attempt to use the fragmentary geologic and paleomagnetic record to infer positions of 
continents, active plate boundaries and relative motions across the globe (e.g., Merdith et 
al., 2021). 
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