Innovative Research Program Projects, 2010

Going high-res and to the deep to bridge the earthquake-tsunami gap

CIRES scientists hooked more than they bargained for when they pulled deep-sea pressure gauges and seismometers from the waters off New Zealand. The instruments were originally put in place to map the Alpine Fault. But during the year they were deployed, the dense network of sensors also recorded signals for five tsunami-generating earthquakes, providing a resolution of data that could help CIRES scientists Anne Sheehan, Zhaohui Yang, and George Mungrov, and NOAA’s Kelly Stroker come to grips with the physical nature of waves produced by ocean rumbles. The data will help bridge the earthquake to tsunami gap, which could help tsunami warning systems more accurately model the size of waves as they approach landfall.

DETAILS: Array Studies of Tsunami Wave Propagation (Anne Sheehan, Zhaohui Yang, George Mungov, Kelly Stroker)

Pathways of pollution go 3-D

Lockheed OnePlanes sampling the air with optical scanners and laser systems called lidars might sound like science fiction, but these technological wonders have revolutionized the way we understand our skies. Many projects tend to use one of these methods or measure one component of the air, but what could you learn from combining all these technologies into one experiment? CIRES Fellow and NOAA scientist Michael Hardesty along with CIRES’ Christoph Senff, Guy Pearson of Halo Photonics, Fay Davies of the University of Salford, and CIRES Fellow Rainer Volkamer decided to try it out as part the expansive air quality monitoring experiment known as CalNex. The result will be a never before seen 3-D view of wind and ozone transport over California, which will help provide a high-resolution picture of pollution pathways.

DETAILS: 3-dimensional aircraft-based measurement of wind profiles for quantifying ozone transport (Mike Hardesty and Christoph Senff)

Taking the sting and hassle out of HPV vaccines

It’s estimated that more than 300,000 women die each year from cervical cancer, a disease caused by certain types of human papillomavirus (HPV), and especially devastating in developing countries. There is a vaccine for HPV, but right now that vaccine entails money, a little pain, and refrigeration — all factors that limit who can afford, tolerate or access this important health precaution. Much like the inhalable measles vaccine currently in human vaccination tests, CIRES’ Robert Sievers and CU colleague Steve Cape look to engineer a dry powder ‘wafer’ version of the HPV vaccine that users can absorb under the tongue. The innovation would help cut costs, increase longevity, and reduce the “ouch” factor of being vaccinated against HPV. 

DETAILS: New Needle-Free Methods of HPV Vaccine Delivery of Aerosols and Dry Powders (Bob Sievers and Steve Cape)

 

Ancient corals and modern climate models to expose secrets of El Niño’s past

Sampling coralEl Niño tends to be a bit coy when it comes to uncovering the truth behind its past. The dynamic duo of climate models coupled with field measurements can give a good picture of the modern nature of El Niño, but to understand the way it reacts to climate change, scientists need to dig back thousands of years, something that has so far proven difficult. Turns out ancient corals may offer the key to extending the timeline of El Niño’s history from decades to millenium. Baylor Fox-Kemper and Samantha Stevenson of CIRES are teaming up with researchers from the Universities of Wollongong and New South Wales in Australia to look at how the information collected from fossilized corals combined with modeling can shed light on El Niño’s past. Doing so would help put modern observations into context, and provide important comparisons between past and present El Niño cycles.

DETAILS: Statistics of ENSO Past and Present: Comparing Climate Models to Coral Reconstructions (Baylor Fox-Kemper, Samantha Stevenson, Helen McGregor, Steven Phipps)

New instrument to ferret out trace gases, starting with ozone, hiding in water vapor

One problem with ozone is that it doesn’t take a lot to trigger complex atmospheric processes. Small concentrations can trip up satellites as they take readings on atmospheric chemistry, for instance. Other trace gases behave similarly and are equally difficult to quantify, especially when they get around water vapor. Experimental measurements have lacked the sensitivity to detect weak ozone and ozone-water signals. CIRES’ Veronica Vaida and CIRES/NOAA colleagues are developing a lab instrument with a super sniffer for ozone. This invention would also help investigate what happens to other oxidized trace gases that interact readily with water. 

DETAILS: Measurements of weak absorptions by O3 and O3-H2O clusters using cavity enhanced spectroscopy (V. Vaida, C. Young, R. Washenfelder, G. J. Frost)

Tracking the eco-paybacks of building a green city

Urban green spaces offer city dwellers a welcome respite from the harshness of the concrete jungle, but what services do they really provide beyond a nice place to take a walk? An eye in the sky is going to help CIRES scientists Carol Wessman and Brian Buma, along with Brian Muller from the College of Architecture and Planning, find out. Using remote sensing, they will monitor the life cycle and effects of “green infrastructure” on urban environments, like the ways natural areas can help with carbon sequestration, improve water, or cool down that dreaded heat island effect. The study is the first step towards developing a systematic, localized breakdown of ecosystem services provided by incorporating natural areas in cities, which could be a key tool for places like Chicago and Shanghai as they establish green infrastructure policy for their climate change adaptations strategies. 

DETAILS: Phenology of green infrastructure in cities: a window into ecosystem services in urban environments (Carol Wessman, Brian Muller, Brian Buma)