FORM TO SPECIFY INPUT DATA FOR SOUND SPEED MODEL CSSPOK2

This model represents the sound speed (squared) as a function of the angle α from a horizontal line at a specified height and latitude. The dependence of C^2 on α is as a sequence of linear segments joined by hyperbolic functions.

$$C^{2} = C_{o}^{2} + \frac{b_{1}}{2} (\alpha - \alpha_{o}) + \sum_{i=1}^{n} \delta_{i} \left(\frac{b_{i+1} - b_{i}}{2} \right) \left\{ \ln \left\{ \frac{\cosh \left(\frac{\alpha - \alpha_{i}}{\delta_{i}} \right)}{\cosh \left(\frac{\alpha_{i} - \alpha_{o}}{\delta_{i}} \right)} \right\} + \frac{b_{n+1}}{2} (\alpha - \alpha_{o}) \right\}$$

$$\frac{dC^{2}}{dz} = b_{1} + \sum_{i=1}^{n} \left(\frac{b_{i+1} - b_{i}}{2} \right) \left\{ \tanh \left(\frac{\alpha - \alpha_{i}}{\delta_{i}} \right) + 1 \right\} ,$$

where $b_i = (c_i^2 - c_{i-1}^2)/(\alpha_i - \alpha_{i-1})$, $\alpha = \tan^{-1}((r - r_o)/r_e(\theta - \theta_o))$, $r_o = r_e + h_o$, $\theta_o = \pi/2 - \lambda_o$, r_e is the Earth radius, r is the radial coordinate of the ray point and θ is the colatitude of the ray point. Thus, δ_i is the half-thickness of a region centered at approximately α_i , in which $dc^2/d\alpha$ changes from b_i to b_{i+1} . Specify--

the model check for CSSPOK2 = 4.0 (W150) the input data format code = (W151) an input data set identification number = (W152) an 80-character description of the model with parameters:

the reference sound speed, $C_{ref} = \underline{\qquad} km/s$ (W153)

the height of the horizontal line, $h_o = \underline{\qquad} km$, m (W154)

the latitude of the horizontal line, $\lambda_o = \underline{\qquad} rad$, deg, km (W155)

and the profile values:

the number of points in the profile, $n = \underline{\qquad} the profile$: $i = z_i = C_i = \delta_i the profile$: $i = z_i = C_i =$

OTHER MODELS REQUIRED: Any sound-speed perturbation model. Use NPSPEED if no perturbation is desired. FUNCTION ALCOSH.