FORM TO SPECIFY INPUT DATA FOR SOUND SPEED MODEL CSSPOKE

This model represents the sound speed (squared) as a function of the angle α from a horizontal line at a specified height and latitude. The dependence of C^2 on α is as a sequence of linear segments joined by hyperbolic functions.

$$\begin{aligned} \mathbf{C}^2 &= \mathbf{C}_0^2 + \frac{\mathbf{b}_1}{2} \left(\alpha - \alpha_0 \right) + \sum_{\mathbf{i}=1}^{n} \delta_{\mathbf{i}} \left(\frac{\mathbf{b_{i+1}} - \mathbf{b_i}}{2} \right) & \ln \left\{ \frac{\cosh \left(\frac{\alpha - \alpha_{\mathbf{i}}}{\delta_{\mathbf{i}}} \right)}{\cosh \left(\frac{\alpha_{\mathbf{i}} - \alpha_0}{\delta_{\mathbf{i}}} \right)} \right\} + \frac{\mathbf{b}_{n+1}}{2} \left(\alpha - \alpha_0 \right) \\ & \frac{d\mathbf{C}^2}{d\mathbf{z}} = \mathbf{b}_1 + \sum_{\mathbf{i}=1}^{n} \left(\frac{\mathbf{b_{i+1}} - \mathbf{b_i}}{2} \right) & \left\{ \tanh \left(\frac{\alpha - \alpha_{\mathbf{i}}}{\delta_{\mathbf{i}}} \right) + 1 \right\} \end{aligned},$$

where $b_i = (c_i^2 - c_{i-1}^2)/(\alpha_i - \alpha_{i-1})$, $\alpha = \sin^{-1}((r\cos(\theta - \theta_o) - r_o)/D)$, $D = (r_o^2 + r^2 - 2 r r_o \cos(\theta - \theta_o))^{1/2}$, $r_o = r_e + h_o$, $\theta_o = \pi/2 - \lambda_o$, r_e is the Earth radius, r is the radial coordinate of the ray point and θ is the colatitude of the ray point. Thus, δ_i is the half-thickness of a region centered at approximately α_i , in which $dc^2/d\alpha$ changes from b_i to b_{i+1} . Specify—

OTHER MODELS REQUIRED: Any sound-speed perturbation model. Use NPSPEED if no perturbation is desired. FUNCTION ALCOSH.