FORM TO SPECIFY INPUT DATA FOR GRAVITY MODEL GCONST

A constant gravititational field (independent of height, longitude, latitude, and time) and the angular velocity of the Earth to calculate Coriolis force Specify—

the model check for GCONST = $\underline{}$ 1.0 (w600) the input data-format code = $\underline{}$ (w601) an input data-set identification number = $\underline{}$ (w602) an 80-character description of the model with parameters:

and the model values: constant gravitational field, |g| = ______ (w603) km/s², m/s² (9.81 m/s² suggested) angular velocity of Earth, $\Omega =$ ______ (w604) rad/s, Hz, s (86164.091 s suggested)

Setting w605, w606, w608, and w610 to 1 and all others to 0 gives the following dispersion relation:

$$(\mathbf{k}^2 + \mathbf{k}_A^2)(N^2 - \omega^2) - (k_z^2 + k_A^2) N^2$$

+4(\mathbf{k} \cdot \tilde{\Omega})^2 + 4(\mathbf{k}_A \cdot \tilde{\Omega})^2 + 4\omega \tilde{\Omega} \times \Gamma \cdot \mathbf{k} + 1/C^2(\omega^4 - 4\omega^2 \tilde{\Omega}^2) = 0 , \tag{1}

where N is the Brunt-Väisälä frequency, $\omega = \sigma - \mathbf{k} \cdot \mathbf{U}$ is the intrinsic frequency, σ is the wave frequency, \mathbf{U} is the background fluid velocity, \mathbf{k} is the wavenumber, $\tilde{\mathbf{\Omega}} = \mathbf{\Omega} + \zeta/4$, where $\zeta = \nabla \times \mathbf{U}$ is vorticity, $\mathbf{\Omega}$ is the Earth's angular velocity, $\mathbf{\Gamma} \equiv \nabla \rho/(2\rho) - \nabla p/(\rho C^2)$ is the vector generalization of Eckart's coefficient, C is sound speed, $\mathbf{k}_A \equiv \nabla \rho/(2\rho)$, where ρ is density, k_z is the component of \mathbf{k} in the direction of $\tilde{\mathbf{g}}$.

Setting w605, w607, and w609 to 1 and all others to 0 gives the following dispersion relation:

$$(k_x^2 + k_y^2)(N^2 - \omega^2) - (\omega^2 - 4\Omega_z^2)(k_z^2 + \mathbf{k}_A^2 - \frac{\omega^2}{C^2}) = 0,$$
 (2)

where N is the Brunt-Väisälä frequency, $\omega = \sigma - \mathbf{k} \cdot \mathbf{U}$ is the intrinsic frequency, σ is the wave frequency, \mathbf{U} is the background fluid velocity, \mathbf{k} is the wavenumber, k_z is its vertical component, k_x and k_y are its horizontal components, Ω_z is the vertical component of the Earth's angular velocity, C is sound speed, and $\mathbf{k}_A \equiv \nabla \rho/(2\rho)$, where ρ is density.

The vorticity term is not yet implemented.