Difference between revisions of "MAB Papers"

From Jimenez Group Wiki
Jump to: navigation, search
(Metastable Background)
(MAB Design)
Line 8: Line 8:
  
 
=MAB Design=
 
=MAB Design=
 +
 +
Ashmore, J. P.; Sang, R. T., Cathode design for a low-velocity metastable neon cold cathode discharge source. Measurement Science & Technology 2001, 12 (4), N17-N21.
 +
 +
Auday, G.; Guillot, P.; Galy, J.; Brunet, H., Experimental study of the effective secondary emission coefficient for rare gases and copper electrodes. Journal of Applied Physics 1998, 83 (11), 5917-5921.
 +
 +
Baker, M.; Palmer, A. J.; Sang, R. T., A high flux metastable atomic discharge source with three-dimensional translation. Measurement Science & Technology 2003, 14 (4), N5-N8.
 +
 +
Berkout, V. D.; Doroshenko, V. M., Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. International Journal of Mass Spectrometry 2008, 278 (2-3), 150-157.
 +
 +
Dos Santos, F. P.; Perales, F.; Leonard, J.; Sinatra, A.; Wang, J.; Pavone, F. S.; Rasel, E.; Unnikrishnan, C. S.; Leduc, M., Efficient magneto-optical trapping of a metastable helium gas. European Physical Journal-Applied Physics 2001, 14 (1), 69-76.
 +
 +
Dumas, M. E.; Debrauwer, L.; Beyet, L.; Lesage, D.; Andre, F.; Paris, A.; Tabet, J. C., Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Analytical Chemistry 2002, 74 (20), 5393-5404.
 +
 +
Fahey, D. W.; Parks, W. F.; Schearer, L. D., HIGH-FLUX BEAM SOURCE OF THERMAL RARE-GAS METASTABLE ATOMS. Journal of Physics E-Scientific Instruments 1980, 13 (4), 381-383.
 +
 +
Faubert, D.; Paul, G. J. C.; Giroux, J.; Bertrand, M. J., SELECTIVE FRAGMENTATION AND IONIZATION OF ORGANIC-COMPOUNDS USING AN ENERGY-TUNABLE RARE-GAS METASTABLE BEAM SOURCE. International Journal of Mass Spectrometry and Ion Processes 1993, 124 (1), 69-77.
 +
 +
Leasure, E. L.; Mueller, C. R.; Ridley, T. Y., HOT, METASTABLE ATOM, MOLECULAR-BEAM SOURCE. Review of Scientific Instruments 1975, 46 (5), 635-637.
 +
 +
Palmer, A. J.; Baker, M.; Sang, R. T., Quantitative comparison of rare-gas cold cathode discharge metastable atomic beam sources. Review of Scientific Instruments 2004, 75 (11), 5056-5058.
 +
 +
Searcy, J. Q., SUPERSONIC MOLECULAR-BEAM METASTABLE ATOM SOURCE INITIATED BY DIRECT DISCHARGE. Review of Scientific Instruments 1974, 45 (4), 589-590.
 +
  
  
  
 
* '''Ashmore, J.P. and Sand R.T., Cathode design for a low-velocity metastable neon cold cathode discharge source, Measurement Science and Technology, 12, N18, 2001.''' [http://cires.colorado.edu/jimenez-group/Reference/MAB_Papers/Ashmore-2001.pdf pdf]
 
* '''Ashmore, J.P. and Sand R.T., Cathode design for a low-velocity metastable neon cold cathode discharge source, Measurement Science and Technology, 12, N18, 2001.''' [http://cires.colorado.edu/jimenez-group/Reference/MAB_Papers/Ashmore-2001.pdf pdf]

Revision as of 11:53, 15 July 2009

Metastable Background

  • Van Doren, J.M., Barlow, S.E., Depuy, C.H.,
  • King 2005 Glow Discharge
  • Penning Ionization 1970

MAB Design

Ashmore, J. P.; Sang, R. T., Cathode design for a low-velocity metastable neon cold cathode discharge source. Measurement Science & Technology 2001, 12 (4), N17-N21.

Auday, G.; Guillot, P.; Galy, J.; Brunet, H., Experimental study of the effective secondary emission coefficient for rare gases and copper electrodes. Journal of Applied Physics 1998, 83 (11), 5917-5921.

Baker, M.; Palmer, A. J.; Sang, R. T., A high flux metastable atomic discharge source with three-dimensional translation. Measurement Science & Technology 2003, 14 (4), N5-N8.

Berkout, V. D.; Doroshenko, V. M., Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. International Journal of Mass Spectrometry 2008, 278 (2-3), 150-157.

Dos Santos, F. P.; Perales, F.; Leonard, J.; Sinatra, A.; Wang, J.; Pavone, F. S.; Rasel, E.; Unnikrishnan, C. S.; Leduc, M., Efficient magneto-optical trapping of a metastable helium gas. European Physical Journal-Applied Physics 2001, 14 (1), 69-76.

Dumas, M. E.; Debrauwer, L.; Beyet, L.; Lesage, D.; Andre, F.; Paris, A.; Tabet, J. C., Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Analytical Chemistry 2002, 74 (20), 5393-5404.

Fahey, D. W.; Parks, W. F.; Schearer, L. D., HIGH-FLUX BEAM SOURCE OF THERMAL RARE-GAS METASTABLE ATOMS. Journal of Physics E-Scientific Instruments 1980, 13 (4), 381-383.

Faubert, D.; Paul, G. J. C.; Giroux, J.; Bertrand, M. J., SELECTIVE FRAGMENTATION AND IONIZATION OF ORGANIC-COMPOUNDS USING AN ENERGY-TUNABLE RARE-GAS METASTABLE BEAM SOURCE. International Journal of Mass Spectrometry and Ion Processes 1993, 124 (1), 69-77.

Leasure, E. L.; Mueller, C. R.; Ridley, T. Y., HOT, METASTABLE ATOM, MOLECULAR-BEAM SOURCE. Review of Scientific Instruments 1975, 46 (5), 635-637.

Palmer, A. J.; Baker, M.; Sang, R. T., Quantitative comparison of rare-gas cold cathode discharge metastable atomic beam sources. Review of Scientific Instruments 2004, 75 (11), 5056-5058.

Searcy, J. Q., SUPERSONIC MOLECULAR-BEAM METASTABLE ATOM SOURCE INITIATED BY DIRECT DISCHARGE. Review of Scientific Instruments 1974, 45 (4), 589-590.



  • Ashmore, J.P. and Sand R.T., Cathode design for a low-velocity metastable neon cold cathode discharge source, Measurement Science and Technology, 12, N18, 2001. pdf