MAB Papers

From Jimenez Group Wiki
Revision as of 13:38, 15 July 2009 by Carly.robinson (talk | contribs) (MAB Design)
Jump to: navigation, search

Metastable Background

  • Anderson, D. R.; Bierbaum, V. M.; Depuy, C. H.; Grabowski, J. J., FLOWING AFTERGLOW STUDIES OF ORGANIC POSITIVE-IONS GENERATED BY PENNING IONIZATION USING METASTABLE ARGON ATOMS. International Journal of Mass Spectrometry and Ion Processes 1983, 52 (1), 65-94. pdf


  • Miller, W. H., THEORY OF PENNING IONIZATION .1. ATOMS. Journal of Chemical Physics 1970, 52 (7), 3563-&. pdf

MAB Design

  • Ashmore, J. P.; Sang, R. T., Cathode design for a low-velocity metastable neon cold cathode discharge source. Measurement Science & Technology 2001, 12 (4), N17-N21. pdf


  • Auday, G.; Guillot, P.; Galy, J.; Brunet, H., Experimental study of the effective secondary emission coefficient for rare gases and copper electrodes. Journal of Applied Physics 1998, 83 (11), 5917-5921. pdf


  • Baker, M.; Palmer, A. J.; Sang, R. T., A high flux metastable atomic discharge source with three-dimensional translation. Measurement Science & Technology 2003, 14 (4), N5-N8.


  • Berkout, V. D.; Doroshenko, V. M., Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms. International Journal of Mass Spectrometry 2008, 278 (2-3), 150-157.


  • DeKieviet, M.; Durr, M.; Epp, S.; Lang, F.; Theis, M., Source for atomic beams of metastable gases: Design and performance. Review of Scientific Instruments 2004, 75 (2), 345-348. pdf


  • Dos Santos, F. P.; Perales, F.; Leonard, J.; Sinatra, A.; Wang, J.; Pavone, F. S.; Rasel, E.; Unnikrishnan, C. S.; Leduc, M., Efficient magneto-optical trapping of a metastable helium gas. European Physical Journal-Applied Physics 2001, 14 (1), 69-76. pdf


  • Dumas, M. E.; Debrauwer, L.; Beyet, L.; Lesage, D.; Andre, F.; Paris, A.; Tabet, J. C., Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Analytical Chemistry 2002, 74 (20), 5393-5404.


  • Fahey, D. W.; Parks, W. F.; Schearer, L. D., HIGH-FLUX BEAM SOURCE OF THERMAL RARE-GAS METASTABLE ATOMS. Journal of Physics E-Scientific Instruments 1980, 13 (4), 381-383. pdf


  • Faubert, D.; Paul, G. J. C.; Giroux, J.; Bertrand, M. J., SELECTIVE FRAGMENTATION AND IONIZATION OF ORGANIC-COMPOUNDS USING AN ENERGY-TUNABLE RARE-GAS METASTABLE BEAM SOURCE. International Journal of Mass Spectrometry and Ion Processes 1993, 124 (1), 69-77. pdf


  • Harris, G. A.; Fernandez, F. M., Simulations and Experimental Investigation of Atmospheric Transport in an Ambient Metastable-Induced Chemical Ionization Source. Analytical Chemistry 2009, 81 (1), 322-329. pdf


  • Kawanaka, J.; Hagiuda, M.; Shimizu, K.; Shimizu, F.; Takuma, H., GENERATION OF AN INTENSE LOW-VELOCITY METASTABLE-NEON ATOMIC-BEAM. Applied Physics B-Photophysics and Laser Chemistry 1993, 56 (1), 21-24. pdf


  • Leasure, E. L.; Mueller, C. R.; Ridley, T. Y., HOT, METASTABLE ATOM, MOLECULAR-BEAM SOURCE. Review of Scientific Instruments 1975, 46 (5), 635-637. pdf


  • Palmer, A. J.; Baker, M.; Sang, R. T., Quantitative comparison of rare-gas cold cathode discharge metastable atomic beam sources. Review of Scientific Instruments 2004, 75 (11), 5056-5058. pdf


  • Searcy, J. Q., SUPERSONIC MOLECULAR-BEAM METASTABLE ATOM SOURCE INITIATED BY DIRECT DISCHARGE. Review of Scientific Instruments 1974, 45 (4), 589-590. pdf


  • Weiser, C.; Siska, P. E., MAGNETIC DEFLECTION ANALYSIS OF SUPERSONIC METASTABLE ATOM BEAMS. Review of Scientific Instruments 1987, 58 (11), 2124-2130. pdf


Metastable Flux

Metastable Cross Sections